ELŐSZÓ

Az építőipar fejlődésével, az építésügyi szabályozási környezet folyamatos változásával az építési és üzemeltetési folyamat szereplőire egyre összetettebb feladatok hárulnak. Ezen feladatok ellátása - a szakmai ismeretekek túl - nagymértékben a hatályos jogszabályok, valamint a szabványok alkalmazásán alapul.

Az építési és üzemeltetési folyamat szereplőinek napi munkájához az építésügyi műszaki irányelvek gyakorlati segítséget nyújtanak.

Bízunk abban, hogy az újjáélesztett és az építési törvényben szabályozott építésügyi műszaki irányelvek az építésügy minden területén fontos eszközevé váljanak a minőség biztosításának, és ez által a gazdaság fejlődésére hosszútávú hatást gyakorolnának.

Az építésügyi műszaki irányelv az építésügyi szereplőket, az építőipart támogató olyan önkéntesen alkalmazható szabályozási eszköz, amely hatékonyan és gyorsan tud válaszolni az iparág külső és belső műszaki, valamint gazdasági kihívásaira.

Az építésügyi műszaki irányelv lényegében módszertan arra, hogy az elvárásokat, követelményeket hogyan lehet hatékonyan teljesíteni mindazon területeken, ahol jogszabály, szabvány nem ad, vagy nem teljeskörűen ad útmutatást, illetve minden olyan esetben, ahol több szabványt, szabályt kell egyidejűleg alkalmazni.

Az építésügyi műszaki irányelv főbb jellemzői:

- szakmaiiság, közérthetőség;
- tömörség, könnyen kezelhetőség;
- egységes tartalmi és formai rend;
- rendszerezettség;
- mindenki számára biztosított hozzáférés.

Az építésügyi műszaki irányelvek alkalmazása önkéntes. Azonban abban az esetben, ha műszaki tartalmú jogszabályban, szerződésben, illetve ezek mellékleleteiben kerül rögzítésre, úgy az kötelező érvényű.

Az építésügyi műszaki irányelvek elfogadását széles körű szakmai egyeztetés előzi meg, annak érdekében, hogy a bennük foglaltak szakmai konszenzuson alapuljanak.

Ezúton szeretnénk megköszönni az előkészítésében résztvevő szakemberek lelkiismeretes és áldozatos munkáját, amely nélkül jelen építésügyi műszaki irányelv nem jöhetett volna létre.

Szintén köszönettel tartozunk az állami szervezetek támogató anyagi és szakmai közreműködéséért.

Külön köszönet mindazon szakmai szervezeteknek és munkatársainknak, akik munkájukkal segítették az építésügyi műszaki irányelv létrehozását.

ÉMSZB Titkársága
NEM HASZNOSÍTOTT LAPOSTETŐK FELÚJÍTÁSÁNAK TERVEZÉSE ÉS KIVITELEZÉSE
ÉPÍTÉSÜGYI MŰSZAKI IRÁNYELV

3.20. Porsár ... 10
3.21. Szegélyezés .. 10
3.22. Telítettség ... 11
3.23. Tetőlejtés .. 11
3.24. Tetőszigetelés ... 11
3.25. Vízelvezetés .. 11
 3.25.1. Belső vízelvezetés ... 11
 3.25.2. Külső vízelvezetés ... 11
3.26. Vízgyűjtő terület .. 11
3.27. Zöldtető ... 11

4. TETŐSZIGETELÉSEK KÖVETÉLMÉNYRENDSZERE ... 22
4.1. Hatások ... 22
4.2. Műszaki követelmények ... 23
 4.2.1. Igénybevételi fokozatok, kockázati szint 23
 4.2.2. Épületfizikai követelmények 24
 4.2.3. Szélszívás elleni védelem 25
 4.2.4. Tetőlejtés .. 29
 4.2.5. Csapadékvíz elvezetés 29
4.3. Jogszabályi követelmények 32
 4.3.1. Általános - jellemzően tervezési - jogszabályi követelmények ... 32
 4.3.2. Kivitelezőkre vonatkozó szavatossági, valamint jótállási kötelezettségek ... 35

5. TEREZÉSI ALAPELVEK ... 36
5.1. Általános felújítási alapelv ... 37
5.2. Szükséges alapadatok ... 38
5.3. Felújítási célok ... 40
 5.3.1. Csapadékvíz elleni szigetelés felújítása ... 40
 5.3.2. Energetikai felújítás .. 41
 5.3.3. Komplex felújítás, részleges bontás ... 41
 5.3.4. Teljes bontás, új rétegfelépítés .. 42
5.4. Épületfizikai elvek .. 43
 5.4.1. Átnedvesedett anyagok megtarthatósága 43
 5.4.2. Páradiffúzió .. 44
 5.4.3. Hőtechnika .. 46
5.5. Anyagosszeférhetőségek .. 46
5.6. Szigetelés aljzata, lejtéskorrekcio, vízelvezetés .. 46
5.7. Rögzigthatóság vizsgálata .. 48
 5.7.1. Leterheléses rögztés .. 48
 5.7.2. Ragasztott rögztés ... 48
 5.7.3. Mechanikai rögztés .. 48
5.8. Csapadékvíz elleni szigetelés ... 48
<table>
<thead>
<tr>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>FELÚJÍTÁSI SAJÁTOSSÁGOK</td>
</tr>
<tr>
<td>6.1. Hőszigeteletlen tető</td>
</tr>
<tr>
<td>6.2. Egyhéjú lapostető</td>
</tr>
<tr>
<td>6.2.1. Egyenes rétegrend</td>
</tr>
<tr>
<td>6.2.2. Duó-tető</td>
</tr>
<tr>
<td>6.2.3. Fordított tető</td>
</tr>
<tr>
<td>6.3. Kéthéjű lapostető</td>
</tr>
<tr>
<td>6.4. Részletek, kiegészítő intézkedések</td>
</tr>
<tr>
<td>6.4.1. Lábazatok, falszegélyek</td>
</tr>
<tr>
<td>6.4.2. Attikák, tetőszegélyek</td>
</tr>
<tr>
<td>6.4.3. Nyilászárók</td>
</tr>
<tr>
<td>6.4.4. Mozgási hézag</td>
</tr>
<tr>
<td>6.4.5. Vízelvezetés</td>
</tr>
<tr>
<td>6.4.6. Csőátvezetések, attörések</td>
</tr>
<tr>
<td>6.4.7. Egyéb szerkezetek</td>
</tr>
<tr>
<td>KIVITELEZÉSI ALAPELVEK</td>
</tr>
<tr>
<td>HIVATKOZOTT ÉS FELHASZNÁLT DOKUMENTUMOK</td>
</tr>
<tr>
<td>8.1. Az irányelvhez kapcsolódó releváns források</td>
</tr>
<tr>
<td>8.1.1. Jogszabály</td>
</tr>
<tr>
<td>8.1.2. Szabvány</td>
</tr>
<tr>
<td>8.1.3. Irányelv</td>
</tr>
<tr>
<td>8.1.4. Szakirodalom</td>
</tr>
</tbody>
</table>
1. ALKALMAZÁSI TERÜLET

Az irányelv tárgya az épületek zárófödémén kialakított lágylemez csapadékvíz elleni szigeteléssel ellátott nem hasznositott lapostető (üzemszerűen nem járható, csak karbantartás céljából, a tetőn elhelyezett gépek, napelemek, kollektorok ellenőrzésére, ökológiai védőréteg fenntartása céljából) szerkezetek felújítása, az általános alapelvék ismertetése a felújítási célok figyelembevétele mellett.

Az irányelvnek nem tárgya

- az egyes alkalmazható szigetelési technológiák változatainak, követelményrendszerének és kialakításának részletes ismertetése;
- foltoszerű javítás;
- a hasznositott tetők (teraszok, intenzív zöldtető, parkoló tető stb.);
- az erkélyek, függőfolyosók felújítása;
- a kis- és meredek hajlású lágylemez szigetelésű tetőszerkezetek felújítása;
- a felújított tetőszigetelés szélerő (szélszívás) elleni rögzítésének részletes méretezése;
- a meglévő tetőszigetelés diagnosztizálása, feltárása, állapotvizsgálata és értékelése, valamint szakértői vélemény készítése módszerének ismertetése;
- a szakértői vélemény tartalmi felépítésének ismertetése;
- a felújítási terv tartalmának ismertetése.

Az irányelv alkalmazása során javasolt figyelembe venni mindazon szabályozó iratokat, amelyek kiegészítik ezt az irányelvet:

- 7/2006. (V. 24.) TNM rendelet az épületek energetikai jellemzőinek meghatározásáról
- 54/2014. (XII. 5.) BM rendelet az Országos Tűzvédelmi Szabályzatról
- TvMI 1.4:2020.07.20. Tűzvédelmi Műszaki Irányelv Tűzterjedés elleni védelem Belügyminisztérium Országos Katasztrófavédelmi Főigazgatóság
- ÉMSZ Tetőszigetelések tervezési és kivitelezési irányelvei
- ÉMSZ Zöldtetők tervezési és kivitelezési irányelvei
- ÉMSZ Bitumenes lemezekből készülő csapadékvízszigetelések tervezési és kivitelezési szabályai
- ÉMSZ Műanyag és gumialapú lemezekből készülő csapadékvízszigetelések tervezési és kivitelezési szabályai
2. ÁLTALÁNOS TUDNIVALÓK

2.1. Bevezető

A 19. század kisebb erkélyei, zárterkélyei után a lapostetők, terasztetők a Bauhaus építészeti irányzatának köszönhetően a 20. század elején az 1920-30-as években terjedtek el, majd a II. világháború után a vasbeton vázas, blokkos, paneles, könnyűszerkezetes, illetve vasbeton csarnokszereketes épületek kedvelt szerkezeti elemei lettek. A sok hibás kivitelezés miatt egy időre visszaszorultak, de az 1990-es évek után ismét nagy-arányban jelentek meg az új és újabb technológiáknak, anyagoknak köszönhetően. Mára az épületállomány jelentős része lapostetős kialakítású. A lapostetők között nagyobb arányban találhatók a nem hasznosított szerkezetek.

Helyzetük miatt a lapostetők az időjárás viszontagságainak jelentős mértékben kitett szerkezetek. Szakszerűen kialakítás vagy a rendszeres karbantartás elmaradása esetén a szerkezet élettartama jelentősen csökken, amely meghibásodásokhoz vezethet. A tetőszigetelések beázásai nagyobb mértékben akadályozzák a belső terek rendeltetésszerű használatát. Ha a hiba kijavítása elmarad egyre nagyobb kiterjedésű és összetettebb épületkárok jönnek létre. Öngyorsító folyamatként a szerkezet tönkremenetele felgyorul, amely már akár teljes felújítást tehet szükséges és rendkívül magas költségekkel járhat.

Az egyes korszakokhoz jellegzetes anyaghasználat és rétegfelépítések tartoznak, amelyek meghibásodásai is jellemzőek. A szakszerű kivitelezésnek köszönhetően ismertek 30-50 éve hibamentesen működő lapostetős szerkezetek is, azonban ezeknél is szükség lehet értéknövelő és/vagy energeki felújításra.

A lapostető szerkezetek hatékony felújításához, a hibaokokat legeljesebben kizáró felújítási koncepció kialakításához szükséges a szerkezet rétegfelépítésének, az alkalmazott anyagoknak, valamint azok állapotának megismerése az épületdiagnosztika módszerével helyszíni, szükség esetén laboratóriumi vizsgálatok mellett. A vizsgálatok eredményei segítik a szakértői állapotértékelést, majd a javasolt alkalmazható technológiákat, szerkezeti kialakításmódok kidolgozását a felújítási célkitűzésnek megfelelően. Az adott feltételeknek, hatásoknak és követelményeknek leginkább megfelelő megoldás kiválasztásához ismerni kell az igénybevételi fokozatot, a kockázati szintet.

2.2. Meglévő nem járható lapostetők

A lapostető a tető működéséhez tartozó rétegek elhelyezkedése alapján lehet:

- egyhétú: ezen belül egyenes, fordított és kettős hőszigetelésű (duó-tető);
- kéthétú: átszellőztetett tető.

A hasznosítás jellege alapján megkülönböztethetők:

- nem hasznosított (üzemszerűen nem járható);
- hasznosított tetők.

2.3. Legjellemzőbb rétegfelépítések

Az elmúlt időszak folyamán számos rétegterv alakult ki, amelyek közül a legjellemzőbbek konkrét rétegtervek nélkül az alábbiak:
A. Bitumenes vékonylemez szigetelésű tetőszerkezet (leginkább 1950-70-es évek):

- fényvédő réteg (pl. bitumenbe ragasztott gyöngykavics),
- csapadékvíz elleni szigetelés: háromrétegű oxidbitumenes vékonylemez 4 réteg forró bitumenes ragasztással,
- kellősítés,
- a szigetelés aljzata (pl. aljzatbeton vagy kőszívacslap simítva),
- lejtést adó (és hőszigetelő) réteg,
1. salakfeltöltés kiszellőztetve, esetleg a salakszellőző vagy a feltöltés alatt/felett hőszigeteléssel,
2. perlifeltöltés, perlitbeton vagy bitumoperlit,
3. könnyűbeton.
- teherhordó födémszerkezet (monolit vasbeton, előregyártott vasbetonpanel, E, M, G vasbetongerendás, Horcsik, Bohn stb.).

B. Alacsony hajlású (csarnok) tetők (1950-70-es évek):

- fényvédő réteg (pl. bitumenbe ragasztott gyöngykavics),
- csapadékvíz elleni szigetelés: háromrétegű oxidbitumenes vékonylemez 4 réteg forró bitumenes ragasztással,
- kellősítés,
- a szigetelés aljzata, hőszigetelés (pl. kőszívacsspalló vagy cementkötésű fagyapottábla simítva),
- tető tartószerkezete (pl. acél, fa vagy vasbeton rácsostartó, gerenda stb.) lejtésben.

C. Lejtésben kialakított vasbetonszerkezet (1950-70-es évek):

- csapadékvíz elleni szigetelés: háromrétegű oxidbitumenes vékonylemez 4 réteg forró bitumenes ragasztással,
- kellősítés,
- hőszigetelés (pl. kőszívacslap, gázbetonlap habarcsba rakva, perlitbeton, kovaföld mésszel kötve, bitumoperlit),
- vasbeton tetőszerkezet (tetőpanel) lejtésben.

D. Ragasztott rétegfelépítés (leginkább 1970-80-as évek):

- fényvédő réteg (pl. fényvédő máz vagy bitumenbe ragasztott gyöngykavics),
- ragasztott csapadékvíz elleni szigetelés (pl. ketréteg bitumenes vastaglemez lángolvasztással ragasztva/hegesztve, PIB bitumenel ragasztva, butilkaucsuk lemez vizes diszperzióval ragasztva, vagy bitumenmáz bevonatszigetelés),
szükség szerint elválasztó-/alátétréteg (bitumenes vékonylemez bitumenes ragasztással vagy lángolvaszással rögzített bitumenes vastaglemez),

gőznyomás-kiegyenlítő réteg (pl. perforált bitumenes lemez foltszerűen vagy sávosan ragasztva),

kellősítés,

a szigetelés aljzata, lejtést adó réteg, hőszigetelés (legfeljebb 10 cm), pl.

1. kavicsbeton vagy könnyűbeton lejtést adó réteg és aljzat + hőszigetelés (expandált poliszirol hab),

2. kavicsbeton vagy könnyűbeton lejtést adó réteg és aljzat lépcsősen kialakított hőszigeteléssel kikönnyítte + hőszigetelés (bitumenes lemez kasírozású lamellázott kőzetgyapot, bitumenes lemez kasírozású expandált poliszirolhab, nátronpapír kasírozású poliuretánhab),

3. kasírozott hőszigetelés (bitumenes lemez kasírozású lamellázott kőzetgyapot, bitumenes lemez kasírozású expandált poliszirolhab, nátronpapír kasírozású poliuretánhab) bitumenes ragasztással + kavicsbeton vagy könnyűbeton lejtést adó réteg.

páratechnikai réteg,

teherhordó födémszerkezet.

E. Ragasztott rétegfelepítés lejtés nélkül (leginkább 1980-as évek):

fényvédő réteg (pl. fényvédő máz),

ragasztott csapadékvíz elleni szigetelés (pl. PIB bitumenel ragasztva, butilkaucsuk lemez vizes diszperzióval ragasztva, vagy bitumenmáz bevonatszigetelés),

szükség szerint elválasztó-/alátétréteg (bitumenes vékonylemez bitumenes ragasztással vagy lángolvaszással rögzített bitumenes vastaglemez),

gőznyomás-kiegyenlítő réteg (pl. perforált bitumenes lemez foltszerűen vagy sávosan ragasztva),

kellősítés,

legfeljebb 10 cm kasírozott hőszigetelés (pl. bitumenes lemez kasírozású lamellázott kőzetgyapot, bitumenes lemez kasírozású expandált poliszirolhab, nátronpapír kasírozású poliuretánhab) bitumenes ragasztással vagy mechanikai rögzítéssel,

páratechnikai réteg (párazáró-, párayomást-kiegyenlítő réteg foltszerűen vagy sávosan ragasztva),

ekellősítés (pl. hideg bitumenmáz vagy emulzió),

teherhordó födémszerkezet.

leterhelő réteg (pl. kavicsterítés, beton járólap esetleg műanyag alátéteken, öntött beton),

hőszigetelés (expandált poliszirolhab egy vagy két rétegben),
G. **Hidegtetők (paneles építési példán) (1960-80-as évek):**

- fényvédő réteg (pl. fényvédő máz),
- ragasztott csapadékvíz elleni szigetelés (pl. kétréteg bitumenes vastaglemez lángolvasztással ragasztva/hegesztve, PIB bitumennel ragasztva, butikaucskuk lemez vizes diszperzióval ragasztva, vagy bitumenmáz bevonatszigetelés),
- kellősítés,
- szigetelés aljzata és lejtésképzés (vasbeton távtartóval lejtésben elhelyezett előregyártott vasbeton födémelem),
- átszellőztetett légréteg,
- hőszigetelés,
- teherhordó födémszerkezet (12-16,5 cm előregyártott vasbeton födépanel).

A fejlesztések révén az 1980-as évektől számos újdonság született – a teljesség igénye nélkül, amelyek a rétegfelépítésekre is hatással voltak:

- csapadékvíz elleni szigeteléssel kasírozott hőszigetelő táblák (expandált polisztirolhab, lamellázott közetgyapot) a két szélén túlnyúló lemezsávokkal vagy a szegélyeknél elmaradó vízszigeteléssel,
- vízszigetelő rétegre kasírozott felszeletelt expandált polisztirolhab hőszigetelés, amely lehetővé tette tekercs alakban a szállítást és előkészítést. A lemez oldalirányú átfedő túlnyúlása biztosította a felületfolytonosítást,
- gyárilag ékbevágott hőszigetelés, mint lejtésképzés,
- mechanikai rögzítés,
- árasztásos tetőszigetelés,
- poliuretán ragasztók,
- új alapanyagú csapadékvíz elleni szigetelőlemezek (pl. modifikált bitumenes vastaglemez, PVC, TPO, EVA, EPDM),
- UV-sugárzással álló csapadékvíz elleni szigetelések.

H. **Egyenes rétegrendű tető (1990-es évektől, ma is alkalmazott):**

- csapadékvíz elleni szigetelés (UV-sugárzás álló) – ragasztva, mechanikai rögzítéssel, leterheléssel,
- hőszigetelés (jellemzően ásványgyapot, expandált polisztirolhab, PIR hab),
- páratechnikai réteg,
lejtésképzés,

> teherhordó fődémszerkezet (lejtésben kialakított fődémszerkezet esetén a külön lejtésképző réteg elmarad).

I. **Egyenes rétegrendű tető hőszigetelésből kialakított lejtésképzéssel (1990-es évektől, ma is alkalmazott):**

> csapadékvíz elleni szigetelés (UV-sugárzás álló) – ragasztva, mechanikai rögzítéssel, leterheléssel,
> hőszigetelés- és lejtésképzés (gyárilag ékbevágott elemekkel (jellemzően expandált polisztirolhab, ásványgyapot)),
> páratechnikai réteg,
> teherhordó fődémszerkezet.

J. **Fordított rétegrendű tető (1990-es évektől, ma is alkalmazott):**

> leterhelő réteg,
> elválasztó szűrőréteg,
> hőszigetelés (extrudált polisztirolhab vagy formahabosított expandált polisztirolhab),
> csapadékvíz elleni szigetelés,
> lejtésképzés (kavicsbeton, cementesztrich),
> teherhordó fődémszerkezet.

K. **Duó-tető (1990-es évektől, ma is alkalmazott):**

> leterhelő réteg,
> elválasztó szűrőréteg,
> extrudált polisztirolhab hőszigetelés,
> csapadékvíz elleni szigetelés,
> hőszigetelés,
> páratechnikai réteg,
> lejtésképzés,
> teherhordó fődémszerkezet.

L. **Könnyűszerkezetes tető (1990-es évektől, ma is alkalmazott):**

> csapadékvíz elleni szigetelés (UV-sugárzás álló) – mechanikai rögzítéssel,
> hőszigetelés,
> páratechnikai réteg,
> teherhordó trapézlemez lejtésben.
2.4. Felújítások okai

A lapostetők felújításának alapvető okai:

- hibás vagy helytelen kivitelezési technológia;
- a szigetelés vízhatlanságának megszűnése: beázás a szigetelés károsodása, folytonossági hiány, sérülés vagy egyéb hiányosság miatt (lásd 3.3. fejezet);
- a szigetelés természettes öregedése;
- megelőző védekezés, karbantartás;
- korszerűsítés, energetikai követelmények változása;
- a tetőszerkezet alatti belső terek rendeltetésének és/vagy kockázati szintjének változása.

2.5. Alapvető meghibásodások

2.5.1. Hibás vagy helytelen kivitelezési technológia

A csapadékvíz elleni szigetelés hibás vagy helytelen technológiával történő kialakítása új tetőszigetelések esetén is rendkívül gyors tönkremenetelhez vezethet. A leggyakoribb okok:

- előzetes diagnosztika, állapotrögzítés és vagy tervezés nélkül végzett kivitelezés;
- tapasztalatlan és/vagy nem megfelelően képzett, szakképzetlen kivitelező;
- nem összeférhető anyagok választása, felületfolytonosítása;
- eltérő anyagú, technológiájú csapadékvíz elleni szigetelés felületfolytonosítása;
- nem megfelelő anyag, rétegrend választása;
- az alkalmazott szigetelési rendszer sajátosságainak, az anyagjellemzők nem ismerete;
- a szigetelési rendszer technológiájának (felületfolytonosítás, rögzítés, részletképzések) nem ismerete, hibás kialakítása stb.

2.5.2. Hibás kialakításból adódó jellemző károsodások

2.5.2.1. Szélszívás elleni védelem

Szélszívás elleni rögzítésnél előforduló hibák:

A szélszívással szemben a szigetelés nem megfelelően rögzített:

- leterheléses rögzítés esetén:
 - a leterhelés mértéke alulméretezett (a szükségesnél könnyebb leterhelőréteg, leterhelésre nem alkalmas extenzív zöldtető felépítmény);
 - a leterhelés anyaga nem megfelelő (pl. sarok vagy szélmezőben 8 m felett kavicsterítés) stb.

Ezekben az esetekben a szél a leterhelőréteget elmozdíthatja, lesodorhatja.
ragasztott rögzítés esetén:

> az aljzatréteg hibái (nem kellően sík, nem elég sima, nem megfelelő kellősítésű aljzat, fészkek, nedves szerkezet stb.) a szigetelés tapadását korlátozhatják;

> hibás páratechnikai kialakítás miatt kialakuló tapadási hiányosságok;

> a teljes felületű rasgatsas helyett részleges (foltszerű, vonalmenti) rasgatsas alkalmazása, amelynek méretezése bizonytalanabb. Ez csökkentett ellenállást jelenthet.

elmarad a vízszintes irányú erők felvételét biztosító rögzítés a hajlatokban;

attikafedés vagy tetőszél hibás kialakítása alatt a csapadékvíz elleni szigetelés alá bejutó szél torlónyomása - különösen mechanikai rögzítés vagy részleges rasgatsas esetén - kárt tehet a szigetelésben, akár a teljes szigetelés tönkremenetelét is okozhatja.

2.5.2.2. Részletképzések

A tetőszigetelési hibák egyik jellegzetes csoportja a különböző szerkezeti részletek helytelen kialakítása. Így a tetőtők valamennyi irányváltása, áttörése, illetve a különböző kiegészítő szerkezetek csatlakozási részletei hibaforrás lehet:

> a szigetelőlemezek nem megfelelő felületfolytonosítása;

> a beépített elemeknél anyag-összeférhetetlenség, nem megfelelő termék alkalmazása (pl. bitumenes lemez szigetelés esetén nem bitumenálló műanyag elemek);

> a beépített elemek pontatlan elhelyezése, szakaszerűtlen beépítése, csatlakozásaik, szegélyezéseik nem vízhatlan minőségű kialakítása;

> az aljzatmozgás miatt tönkremenet szegélyezés csatlakozások;

> felvezetések hóhatár alatti kialakítása;

> függőleges felületeken hóhatár alatt hibásan kialakított áttörések, rögzítések;

> a felvezetések lecsúsztas elleni mechanikai rögzítésének hiánya;

> az aljzattol elváló függőleges szigetelések, előrepedő vagy hiányzó tömítések;

> tetőperemeken, attikafedéseknél, a felépítmények szegélyeinél a hibás kialakítás miatt a szél torlónyomása révén a csapadékvíz elleni szigetelés mögé jutó nedvesség;

> a mozgási hégakat hiányzó vagy szakaszerűtlen kialakítása miatt az aljzatmozgások okozta károsodás;

> fémlemez-fedések és szegélyek hőmozgást gátló rögzítése, valamint tágulási ház naglükü kialakítása, repedése, a felületfolytonosítás vízzáróságának megszűnése;

> fém anyagú aljzatszerkezet felmelegedések negatív következményei stb.

2.5.2.3. Vízelvezetés

A tetőszigetelések meghibásodásának másik jellegzetes csoportja a vízelvezetéssel kapcsolatos:
hibás lejtéskép, nem megfelelő mértékű lejtés (A hibás lejtéssel kialakított vagy lejtésmentes felületeken a csapadékvíz visszatorlódik, vagy megáll a tetőn. A kialakuló porsár miatt mikroorganizmusok, növényzet telepedhet meg, amelyek a szigetelést károsító mikrobiológiai korrózióhoz vezethetnek.);

felépítmények mögötti vízterelés elmaradása;

víznyelők hibás elhelyezése (pl. nagy lehajlású tetőszerkezetek esetén tartószerkezet felett kialakított víznyelő magaspontra kerül);

alulméretezett vízelvezetési rendszer (alulméretezett vízelvezetési keresztmetszet, kevés víznyelő, hiányzó záportározó stb.) korlátozza a vízelvezetést, visszaduzzasztást eredményez, megáll a tetőn a csapadék, amely által hidrosztatikai nyomás lép fel, illetve jelentős többleterhelést jelent;

víznyelők deformálódása, keresztmetszet csökkenése (tetőszigetelési rétegek mozgása, küsszá, duzzadása, elégtelen rögzítése, carbonátosodás, korrózió stb. miatt);

melegítő vízelvezetése külső, fűtetlen vízköpővel, a környezet gyorsabb tönkretételét okozza, ha az átvezető üst és a függőleges ejtőcső elmarad;

belső, keskeny, vonalmenti vápacsatornás vízelvezetés kialakítása általános mezőben vagy csatlakozó szerkezet mentén, különösen dilatáció nélküli fémlemez béleléssel stb.

2.5.2.4. Épület- és szerkezetmozgások

A tetőszigetelés szilárd aljzatának, vagy valamely csatlakozó szerkezetnek a tervezésnél figyelembe nem vett- vagy nem kellőmértékben figyelembe vett- mozgása jellemző tetőszigetelési hiba lehet:

a teherhordó szerkezet (trapézlemez födém, faszerkezetű vagy nagy fesztávolságú vasbeton födém stb.) várttnál nagyobb mértékű lehajlása;

ha a tetőszigetelés rétegein az általános felületen és/vagy a részletképzésekkel, a szigetelési réteghez illő anyagokat nem vezetik át;

beton vagy esztrich aljzat tágulási hézagainak hibás kialakítása, vagy elmaradása repedésekre vezethet, a szigetelés szakadását eredményezhet;

a szilárd és a szerelt szerkezeti elemek eltérő hőmozgásának figyelmen kívül hagyása;

fémlemez szerkezeti elemek esetén a hőmozgás miatt szükséges tágulási hédag elmaradása stb.

2.5.3. Rétegelepítéssel adódó legjellemzőbb meghibásodások

A tetőszigetelések meghibásodásához vezethetnek külön-külön vagy együttesen az alábbi legjellemzőbb hibák:

hibás anyagválasztás, anyagösszetétetlenség (pl. lágyított PVC lemez csapadékvíz elleni szigetelés környezetében bitumen tartalmú anyag alkalmazása, szigetelőanyaghoz nem illő ragasztás);

ferde felületeken a hagyományos oxidbitumenes ragasztás megcsúszik;
többrétegű bitumenes lemezeszigetelések egyes rétegei közé az építés során bezárt nedvesség, vagy a teljes felületű ragasztás hiányossága miatt bezáródott levegő folyamatos tefrogatváltozása miatt légubborék keletkezik, amely az anyagféradás következtében kifakad.

Egyenes rétegrendű tétőszerkezetek esetén:

- a tetőszigetelés páradiiffúzió szempontjából helytelenül megválasztott kialakítása miatt kialakuló nedvesedések, szerkezeti mozgások és tönkremenetel;
- a teljes felületen ragasztott csapadékvíz elleni szigetelés alá bejutó nedvességből kialakuló vízgőz tefrogatnövekedése feszítő hatást gyakorol a szigetelésre. Kialakulhat:
 > a pára- és/vagy a gőznyomás-kiegyenlítő réteg hiánya, nem kielégítő működése vagy sérülése,
 > nagy mennyiségű, vagy feldúsuló bezárt épíitési nedvesség, valamint
 > a páratechnikai és a gőznyomás-kiegyenlítő réteg vagy a csapadékvíz elleni szigetelés páradiiffúziós ellenállása osszehangolásának elmaradása miatt (helytelen anyagmegválasztás).

A keletkezett léghőlyagok gyűrődéseket, ráncokat okozhatnak, amelyeket a nyomás felszakíthat.

- perlítből készített lejtésképzés és/vagy hőszigetelés nedvesség tároló tulajdonságú, így a bezárt vagy bejutott nedvesség miatt a teljes felületen ragasztott szigetelés felhőlyagosodhat;
- a hőszigetelés felett kialakított (lejtést adó) aljzatbetonnal beépített technológiai nedvesség – különösen hiányzó páratechnikai réteg esetén a tetőszerkezetbe áramló pára folyamán együtt – gőznyomást fejt ki a betonszerkezetre, amely ezáltal megsemmisíthet, felpenderedhet és – elsősorban a ragasztott – szigetelés szakadását okozhatja;
- a hőszigetelésre ragasztott műanyaglemez csapadékvíz elleni szigetelés zsugorodása – különösen a téli fűtési időszakban – a forró bitumennel a szilárd zárófödéremre, vagy az aljzatra lezasztott és felfújható polisztirolból hőszigetelő táblákat a tetőfelület közepé felé mozgíthatja (készülés jelensége).
 > a hajlatokban feszültség halmozódás alakulhat ki, amely a szigetelés szakadásához vezethet;
 > hajlatmenti rögzítés hiányában a függőleges falszigetelés kifeszül, kihúzódik, alacsony attika hibás lezárásá esetén kicsúszhat, amely felületfolytonossági hiányokhoz vezet;
 > a hőszigetelő réteg elmozdulása miatt megnyúlás ihész hőhíddá válik, amely állagvédelmi problémákat okoz;
- egyes poliuretanab hőszigetelő táblák nedvesség hatására megduzzadhatnak, alakváltozás következhet be (pl. szélük felgörbül, kardossá válnak), amely a csapadékvíz elleni szigetelés felgyűrődését, megnyúlását (ún. bálnaháta) kialakulása), illetve szakadását idézheti elő;
- a vízszigetelés vagy a páratechnikai réteg hibából, illetve a réteg felépítés helytelen kialakításából következő átnedvesedés, átáraz következtében a hőszigetelő réteg (pl. közetgyapot) szilárdság csökkenése, roskadása következhet be.
Fordított rétegrend esetén:

- az expandált polisztrohlab jelentős vízfelvétellel rendelkezik. Ez fordított rétegrendben alkalmazva jelentős többleterhet, hőszigetelőképesség romlást, ezzel állagvédelmi problémákat (pl. penészedés) okoz;
- a nedvességgel telítődött expandált polisztrohlab hőszigetelő réteg növényzet megtelepedését teszi lehetővé, amely a szigetelést tökéletlenít eredményezheti;
- alacsony nedvességrhelős hőszigetelés felett a szabad páradiffúziót akadályozó réteg a hőszigetelés átnedvesedését okozhatja;
- jelentős hibaforrás lehet a rétegrendi sajátosságok figyelmen kívül hagyása, így
 - nem megfelelő felülettömegű födémszerkezet;
 - alátámasztás jelensége;
 - többrétegű fektetés stb.

Kéthéjú, átszellőztetett rétegrend esetén:

- a hőszigetelő táblák pontos, hézagmentes, felülettömegonyos terítése a csapadékvíz elleni szigetelés aljzatának távtartói, tartószerkezete miatt sokszor megszakad hőhidat és állagvédelmi problémát eredményezve;
- hidegtetőknél a szigetelés aljzatán (vékony előregyártott vasbeton panelelemek, fémlemezaljzat stb.) létrejövő páralecsapódás beállás jellegű tüneteket okozhat elsősorban előregyártott vasbeton födének csatlakozásai mentén, mivel a nyitott rétegfelépítés biztosítása érdekében nem készül párazáró réteg.

2.5.4. Csapadékvíz elleni szigetelés öregedése, avulása

A folyamatos UV-sugárzás, a fotokémiai hatások, a hőhatás, az oxigén hatása, a páratartalom változása stb. miatt a csapadékvíz elleni szigetelések esetén is természetes öregedési folyamat megy végbe. Ezek a hatások az anyag avulásához és ezáltal a csapadékvíz elleni szigetelés tönkremeneteléhez vezethetnek. Az eredeti anyagminőség és a védelem függvényében ez az időintervallum igen változó lehet. Az öregedés folyamatát jelentősen befolyásolja a fényvédelem (UV-sugárzás elleni védelem) hiánya vagy felújításának elmaradása (gyöngykavics réteg kipergése, fényvédő máz elhagyása, nem UV-sugárzás álló szigetelés fektetése stb.).

Amennyiben az öregedés hatására folytonosság hiány alakul ki vagy az anyagjellemzők esetén kb. 25%-nál nagyobb változás tapasztalható a csapadékvíz elleni szigetelés felújítása szükséges.

Az öregedés a különböző anyagoknál eltérően mutatkozik meg. Legjellemzőbb jelek:

- bitumenes lemezek
 - befolyásolja a bitumen alapanyaga (oxid vagy modifikált bitumen), minősége, a hordozóréteg (pl. papír, korhadó hordozóréteg) minősége;
 - a lemezek zsugorodása (hordozóréteg függvényében különböző mértékű lehet);
a bitumen rideggé, törékenyvé válik;
> elefántbőr jellegű repedzettség megjelenése felületi kiterjedésben.
> műanyag és gumialapú lemezek
> zsugorodására miatt a szigetelőlemez feszülése figyelhető meg, a csomópontoknál elhúzódások, szakadások jelentkezhetnek;
> lágyítóvándorlás miatt merevvé, rideggé válik;
> pontszerűen narancsos befűződéseken mentén csillag jellegű szakadások repedése, vagy körkörös repedések jelennek meg stb.

2.6. Rendeltetésváltás

Az épület, vagy belső tereinek rendeltetésváltása esetén gyakran szükséges az épület energetikai korszerűsítése, amely jellemzően a tetőszigetelést is érinti, valamint ezzel párhuzamosan a megváltozott rendeltetésnek megfelelően a kockázati szint is megváltozhat.

Az új rendeltetés (konyház, üzem, öltöző vizesblokk, hűtőhelyiség, szauna stb.) esetén eltérő beltéri hatások (pl. magasabb belső hőmérséklet, magasabb páraterhelés stb.) lehetnek jellemzőek, amelyeket tetőszigetelés esetén figyelembe kell venni.

3. FOGALOMMEGHATÁROZÁSOK

3.1. Aljzat

A csapadékvíz elleni szigetelés közvetlen aljzata az az épületszerkezeti réteg, amelyre a csapadékvíz elleni szigetelést fektetik vagy felhordják (pl. hőszigetelés, deszkázat, vagy lejtést adó réteg).

3.2. Árasztásos tető

Lejtésmentes lapostető, amelyet meghatározott magasságú vízréteggel árasztanak el.

3.3. Átlapolás

A vízszigetelő lemezek széleinek egymásra takarása és vízhatlan kapcsolata. A toldás és az átfedés gyűjtőfogalma.

3.3.1. Toldás

A szigetelőlemezek végeinek egymásra takarása és vízhatlan csatlakoztatása.

3.3.2. Átfedés

A vízszigetelő lemezek hosszoldali átlapolása és vízhatlan csatlakoztatása.
3.4. Áttörés
Olyan szerkezeti elem, amely áthatol a csapadékvíz elleni szigetelésen (pl.: csőáttörés, kábelátvezetés, víznyelők, kiorgonyzás stb.).

3.5. Csapadékvíz elleni szigetelés
Felületjellegű szerkezeti réteg, amely az épület szerkezeteit és a belső tereket a csapadékvíz hatása ellen vízhatlanul megvédi. Részei még a felhajtások, szegélyek, áttörések és hézagképzések.

3.6. Csatlakozás
A csapadékvíz elleni szigetelés felületfolytonosítása síkban vagy térben, tetőfelépítményekhez, áttörésekhez, falakhoz stb.

3.7. Ellenlejtés
A vízelvezetés irányával szöget bezáró vagy ellentétes lejtésű aljzatkialakítás.

3.8. Elválasztó réteg
A csapadékvíz elleni szigetelést és a tetőszigetelés vagy egyéb épületszerkezet rétegeit hatékonyan elválasztó réteg.

Az elválasztó réteg feladata lehet:

- a felületi egyenlőségekből adódó kedvezőtlen mechanikai hatás megelőzése - alátét elválasztó réteg;
- két egymásra kémiai nagyon ható réteg elválasztása;
- a következő réteg mechanikai hatásától védő réteg - védő-elválasztó réteg.

3.9. Építési nedvesség
Vegyileg le nem kötött szabad víz, amely az építés során az építőanyagokkal vagy a beépített levegővel a szerkezeti rétegek közé kerül.

3.10. Felépítmény (tetőfelépítmény)
A tető síkjából kiemelkedő, kisebb méretű, az épület tömeghatását nem befolyásoló, szerelt és épített épületszerkezetek (szellőzőfelépítmény, liftfej, tetőkibúvó, kémény stb.) gyűjtőfogalma.

3.11. Felületvédelem
A csapadékvíz elleni szigetelés takarása, amely védi a vízszigetelő réteget a hő- és egyéb légköri hatásoktól, és/vagy a mechanikai igénybevételektől.

3.12. Gőznyomás-kiegyenlítő réteg
A csapadékvíz elleni szigetelés alatt elhelyezett vagy azzal egyesített réteg. Feladata a napsütés hatására a födém felső síkja (ha van párazáró réteg, akkor a párazáró réteg) és a csapadékvíz elleni szigetelés közé bezárt gőzzé alakuló nedvesség nyomásának eloszlata a szigetelés károsítása nélkül.
3.13. Ideiglenes szigetelés

Olyan szigetelés, amely anyaga, rögzítése és részletképzései révén a tetőszerkezet ideiglenes csapadékvíz elleni védelmét biztosítja a végleges tetőszigetelés elkészültéig.

3.14. Lapostetők

Alacsony hajlású (< 8% = 5°), csapadékvíz elleni szigeteléssel ellátott tetőszerkezetek.

- Használat alapján megkülönböztethető:
 - Nem hasznosított (nem járható) tetők

 A rendeltetésszerű használatra (huzamosabb és/vagy rendszeres emberi tartózkodás, forgalmi igénybevétel vagy növényzet telepítése) nem alkalmas tetők. A közlekedés csak karbantartás céljából, a tetőn elhelyezett gépek, gépészeti felépítmények, napelemek, kollektorok ellenőrzése és rendszeres karbantartása, az ökológiai védőréteg fenntartása céljából megengedett.

 - Hasznosított (járható) tetők

 Huzamos és/vagy rendszeres emberi tartózkodásra, forgalmi igénybevételre kialakított lapostető. A használat jellege alapján lehetnek:

 > járható vagy terasztetők,
 > gépjárművel járható tetők, vagy parkolótetők,
 > növényzetdel telepített (intenzív vagy extenzív) tetők,
 > illetve ezek eltérő intenzitású és vegyes használatú változatai.

- A rétegfelépítés alapján, a tető működéséhez tartozó rétegek elhelyezkedése alapján megkülönböztethető:

 - hőszigeteteletlen tetőszerkezetek
 - hőszigeteltet tetők

 - egyhéjú (melegtetők)

 > Egyenes rétegrendű az a lapostető, ahol a hőszigetelés védett helyzetben a csapadékvíz elleni szigetelés alatt helyezkedik el.

 > Fordított rétegrendű az a lapostető, ahol a hőszigetelés a csapadékvíz elleni szigetelés felett helyezkedik el.

 > Kettős hőszigetelésű (duó-tető) az a lapostető, ahol a hőszigetelés a csapadékvíz elleni szigetelés alatt és felett helyezkedik el.

 - kéthéjú vagy átszellőztetett tető (hidegtető)

3.15. Leterhelés

A tetőszigetelésre készített méreterezett réteg, amely a szél szívóhatásának ellentételezését szolgálja.
3.16. Mikrobiológiai korrózió
A nedvességgel átitatott porasban megtelepedő állati és növényi eredetű élőlények által kibocsátott ürülék, gyökérsvák stb. által okozott károsító igénybevétel.

3.17. Mozgási hézag
Két szerkezeti részt, vagy építményrészt elválasztó betervezett hézag, amely azok (hőtágulásból, süllyedésből, földrengésből stb. eredő) mozgását káros hatás nélkül lehetővé teszi.

3.18. Páradiffúzió
A vízgőz két eltérő koncentrációjú tér között kiegyenlítődésre törekszik, azaz a pára az egyensúlyi állapot elérése érdekében diffúzióval a magasabb koncentrációjú térből az alacsonyabb koncentrációjú tér felé halad.

A páradiffúziós ellenállási tényező vagy páradiffúziós ellenállási szám \(\mu \) [-] azt mutatja meg, hogy 1 m vastag anyag diffúzióssal ellenállása hányszor nagyobb 1 m vastag levegő diffúziós ellenállásánál.

\[
\mu = \frac{\delta_{lev}}{\delta_{anyag}} [-]
\]

ahol

\(\delta_{lev} \) a levegő párválasztási tényezője [kg/msPa, g/msMPa],
5 cm levegő esetén 0,2x10^{-9} [kg/msPa, g/msMPa]

\(\delta_{anyag} \) az adott anyag párválasztási tényezője [kg/msPa, g/msMPa]

Az adott réteg vagy szerkezet páradiffúziós képességét jellemzi:

Páradiffúziós egyenértékű légrétegvastagság \(s_g \) [m]:
Azt mutatja meg, hogy az adott anyag páradiffúziós ellenállása milyen vastagságú levegőréteg páradiffúziós ellenállásával azonos nagyságú

\[
s_{g}=d \times \mu [m]
\]

ahol

\(d \) az adott réteg vastagsága [m]
\(\mu \) páradiffúziós ellenállási szám [-]

Páradiffúziós ellenállás \(R_v \) [m²sPa/g, m²sMPa/g, m²sPa/kg]:
Megadja, hogy időegység alatt a mérési körülmények által meghatározott nyomáson, adott vastagságú réteg egységes felületén mennyi vízpára képes áthaladni. Főleg vékony lemezeknél, fólia jellegű termékeként jellemző megadása.

\[
R_v = \frac{d}{\delta} [m]
\]
ahol

\(d \) az adott réteg vastagsága [m]
\(\delta \) párafeszültségi tényező [kg/msPa, g/msMPa]

vagy

\[
R_v = \frac{s_d}{\delta_{lev}} \text{[m]}
\]

ahol

\(s_d \) páradiffúziós egyenértékű légrétegvastagság [m]
\(\delta_{lev} \) a levegő párafeszültségi tényezője [kg/msPa, g/msMPa]

3.19. Páratechnikai réteg

A hőszigetelő tulajdonságú réteg alatt elhelyezett páratechnikai réteg feladata párafékezés, párazárás és páramos-kiegyenlítés.

A párazáró-/páramos-kiegyenlítő réteg feladata a belső tér felől páradiffúzióval érkező nedvességnyomásának eloszlatása, valamint annak megakadályozása, hogy a tetőszigetelésbe jutva kárt okozhasson.

3.20. Porsár

A lefolyástalan tetőfelületen megülepedő légköri szilárd szennyeződés, amely felhalmozódva mikrobiológiai korrozióhoz vezet.

3.21. Szegélyezés

A csapadékvíz elleni szigetelés előírt felvezetése, felhajtása kapcsolódó szerkezetek mentén.

3.22. Telítettség

Az építőanyagok póruresszerkezetének, pórustérfogata alapvetően meghatározza a telítési vízfolyamot. A tömeg%-ban kifejezett nedvességtartalom az eltérő póruresszerkezetű anyagok esetén szélsőségesen eltérő telítettséget jelenthet, így a telítettség képezi az összehasonlítás alapját.

\[
S = \frac{w_i}{w} \text{[%]}
\]

ahol

\(w_i \) az aprított minta nedvességtartalma [m%]
\(w \) a darabos minta telítési vízfolyam [m%]

3.23. Tetőlejtés

A tetősík lejtése a vízszigetelés síkján a vízszinteshez viszonyítva. A tetőlejtés mértéke jellemzően százalékosan adott.

3.24. Tetőszigetelés

A teherhordó záróödémen a szerkezeteket szemben támasztott követelményeket (pára, hő, csapadékvíz, UV-sugárzás, zaj elleni védelem) komplex módon kielégítő szerkezet.
3.25. Vízelvezetés
A tetőszigetelésre jutó csapadékvíz összegyűjtése és elvezetése. Kialakítása szerint lehet:

3.25.1. Belső vízelvezetés
A csapadékvíz az épület kontúrrajzán belül gyűjtik össze és vezetik el.

3.25.2. Külső vízelvezetés
A csapadékvíz az épület kontúrrajzán kívül gyűjtik össze és vezetik el.

3.26. Vízgyűjtő terület
Egy vízelvezetési pontra (víznyelő, vízköpő vagy ereszcsatorna ejtőcsőve) eső tetőfelület vagy tetőfelület-szakaszok összessége.

3.27. Zöldtető
Növényzettel telepített tető, amelyben az épületszerkezet, a tetőszigetelés rétegei és a kertészet szerves egységet alkotnak. Az ültetőközeg vastagság, az ápolási igény alapján megkülönböztethető:

- extenzív zöldtető
 Vékony ültetőközeggel kialakított, jó regenerálódó képességű, jellemzően szárazságtűrő növényekkel beültetett, csekély ápolási igénynyel rendelkező ökológiai védőréteg vagy biodiverz zöldtető.
- intenzív zöldtető (kerttető)

4. TETŐSZIGETELÉSEK KÖVETELMÉNYRENDSZERE

4.1. Hatások
A lapostetőkre ható igénybevételek:

- nedvességhatások
 A csapadék (eső, hó, jég, köd stb.), az építési nedvesség és a belső terek használatából származó nedvesség (páratelepítés) az építőanyagokba behatolva befolyásolhatja, előnytelenül megváltoztathatja azok tulajdonságait, működését, károsíthatja a rétegeket.

- hőhatások
 A külső tér változó hőmérséklete, valamint a belső és külső tér közötti hőmérsékletkülönbségek hatással vannak a tetőszigetelés rétegeire. A hőmérsékletváltozásból adódó hosszúválasztások káros alakváltozást eredményezhetnek. A hőmérsékletváltozások lehetnek évszakhoz (téli-nyári), napszakhoz (nappal-éjjel) kötötték és gyors lefolyásúak (hirtelen időjárásváltozás, nyári jéges stb.).
mechanikai hatások

Mechanikai igénybevételek származhatnak:

> a csapadékvíz elleni szigetelés aljzatának egyenlőtlenségeiből (pl. kiálló kavicsszemek, síkfogasság, felületi hiányok);
> a csapadékvíz elleni szigetelés aljzatának mozgásától (zsugorodás, süppedés, hőtágulás stb.);
> a fődémszerkezet alakváltozásából (pl. beton zsugorodási repedése, a teherhordó szerkezet mozgása, az épület süllyedése);
> a tetőszigetelést alkotó anyagok alakváltozásából (pl. hőszigetelő anyag mozgása, méretváltozása);
> az egyes rétegek mozgásából, amelyek más rétegekben kényszerfeszültséget okoznak (pl. teljes felületű ragasztás esetén az aljzat mozgása);
> a szélterhelés okozta szívó- és nyomóhatásból, valamint az ezek miatt kialakuló építménymozgásokból;
> a karbantartási, javítási vagy egyéb építési tevékenységből (pl. helytelen anyagtárolás, nem megfelelő cipőhasználat, hibás segédeszköz használat, pontszerű terhelés).

eyéb igénybevételek

Ide sorolhatók:

> szélhatásból származó erozív (dörzsölő) hatás;
> sugárzó hő (légechnikai kivezetés esetén is előfordulhat);
> a napsugárzás károsító hatása (pl.: UV-sugárzás);
> légköri sugárzás (őzon, röntgen stb.);
> a tetőszigetelésen lerakódó szennyezőanyagok, ezekben megtelepedő mikroorganizmusok, növények;
> helyi adottságok (pl. környező ipari technológia mellékterméke, kéményből származó vegyi szennyeződések);
> kémiai anyagösszeférhetőség;
> tűzhatás, illetve
> a belső tér rendeltetéséből származó hatások.

Ezen igénybevételek jellemzően a természetes öregedést gyorsítják, mikrobiológiai korroziót okozhatnak, amelynek során például a növény gyökerei behatolhatnak a tetőszigetelésbe stb.

Azokat az igénybevételeket és hatásokat, amelyek a csapadékvíz elleni szigetelés működése és állaga szempontjából jelentőséggel bírnak, nem csak új tetőszigetelések, hanem felújítások tervezése, az egyes rétegekhez az anyagok kiválasztása során is figyelembe kell venni.
4.2. Műszaki követelmények

4.2.1. Igénybevételi fokozatok, kockázati szint

A tetőszerkezetek teljesítményelvű tervezése során a beépítendő anyagok műszaki teljesítőképességét a tetőszerkezetet érő hatások összessége határozza meg. A mechanikai és a hőterhelési igénybevételek alapján megkülönböztethetők mérsékelt és fokozott igénybevételi csoportok.

Mechanikai igénybevételi csoportok:

I. **fokozott** mechanikai igénybevételeknek kitett csapadékvíz szigetelések

- amelyekre a közvetlen aljzat és/vagy a teherhordó szerkezet mozgásai közvetlenül hatnak (pl. közvetlenül a hőszigetelésre készülő csapadékvíz elleni szigetelés, együtt dolgozást biztosító vasalt felbeton nélküli előregyártott nagyelemes vagy könnyűszerkezetes födémre készülő szigetelés);
- a kivitelezés és/vagy a használat során fokozott igénybevételnek kitett szerkezetek (pl. intenzív zöldtetők, járműforgalommal terhelt tetők, a nem járható tetők mindennapos szerelő-karbantartó tevékenység esetén);
- a csapadék- és szélerősség közvetlenül kitett, azaz a nehéz felületvédelem (pl. leterhelő kavicsréteg vagy betonlap, járható burkolati rétegek, vagy növényzettel való telepítés) nélküli tetők;
- a középmagas és magas épületek, vagy a tengerszint feletti 300 m-nél magasabban fekvő épületek tetőszigetelései.

II. **mérsékelt** mechanikai igénybevételnek kitett szigetelések (azok, amelyek nem tartoznak az I. csoportba)

Csapadékvíz elleni szigetelések **hőterhelés-igénybevételi csoportjai:**

- A **fokozott** hőméréséleti terhelésű valamennyi nehéz felületvédelem nélküli csapadékvíz elleni szigetelés
- B **mérsékelt** hőterhelésű valamennyi csapadékvíz elleni szigetelés, amelyre nehéz felületvédelem vagy használatot biztosító réteg kerül (pl. fordított, járható, növényzettel telepített tető)

A csapadékvíz szigetelések igénybevételi szintjei:

<table>
<thead>
<tr>
<th>IA</th>
<th>II A</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB</td>
<td>II B</td>
</tr>
</tbody>
</table>

Jelű lehet.

Fokozott kockázati szint a tetőszigetelés, ha

- a belső tér rendeltetése ezt megkívánja;
- a vállalt szavatosság eléri vagy meghaladja a 10 évet;
- meghibásodás esetén a javítási költség nagyobbé bontásból és annak helyreállításából állhat.

Fokozott kockázati szint esetén az ÉMSZ Bitumenes lemezekből valamint a Műanyag és gumialapú lemezekből készülő csapadékvíz elleni szigetelések tervezési és kivitelezési szabályaiiban meghatározott minimális követelményeknél magasabb teljesítőképességű (több réteg, nagyobb rétegvastagság vagy az előírttnál magasabb műszaki jellemzők) vízszigetelést kell választani.
4.2.2. Épületfizikai követelmények

A tetőszigeteléseknek térelhatároló szerkezetként az energetikai követelményeken túl számos egyéb épületfizikai követelményt is ki kell elégtetniük különösen huzamos emberi tartózkodásra és/vagy fokozott kockázati szintű terek felett.

4.2.2.1. Energetikai követelmények

A tetőszigetelések tervezésekor az érvényben lévő energetikai előírásoknak megfelelően kell eljárni.

A jelenleg érvényben lévő 7/2006. (V. 24.) TNM rendelet alapján energetikai célú felújítások során is az új épületeknek megfelelő energetikai előírásokat kell teljesíteni (U ≤ 0,17 W/m²K). Bár műemlék épületek felújításakor ez nem előírás, ennek ellenére javasolt az előírt érték betartása.

4.2.2.2. Állagvédelmi követelmények

A hőszigetelés feladata az energetikai követelmények teljesítése, a komfortért biztosítása mellett a tartószerkezet hőterhelésének csökkentése, valamint a felületi és a szerkezeten belüli páralécspótlás megakadályozása. Ennek biztosítás érdekében az állagvédelmet az MSZ 24140:2015 szabvány szerint méretezéssel vagy (dinamikus) szimulációval kell igazolni.

Figyelembe kell venni, hogy

- a szerkezetben maradó nedvesség nem okozhat páralécspótlást, valamint gőznyomással szerkezeti problémát;
- fordított rétegrendben a hőszigetelés felett páradiffúzió szempontjából csak nyitott felépítmény kialakítása megengedett.

A megfelelő állagvédelem érdekében a szerkezetek kialakítása során törekedni kell a hőhidmentes kialakításra. Ha ez nem lehetséges, akkor megfelelő kiegészítő intézkedések (pl. szerkezetfűtés) szükségesek.

4.2.2.3. Akusztikai követelmények

A külső határoló szerkezeteket a mértékdadó külső zaj (jellemzően közlekedési zaj, az épület közelében működő üzemű létesítményből, épitkezésből eredő zaj) ellen az épületben folyó tevékenység függvényében a nappali, és ha szükséges (pl. lakóépület esetében) az éjszakai időszakra is az MSZ 15601-2:2007 szabvány alapján kell méretezni. A cél az, hogy a védett térben a megszűnt zajterhelés nagysága alatt maradjon a kialakuló zaj. Így önmagában a tetőszigetelésre követelményérték nem adható meg.

4.2.3. Szélszívás elleni védelem

A szél útjában álló épületek határoló felületein eltérő jellegű és nagyságú ígénybevétel lép fel. A szélteher függ:

- a tényleges szélsebességtől;
a földrajzi környezettől:
> tengerszint feletti magasság,
> a környezet domborzati viszonyai (szélcsatorna, vízpart, sík vagy domborzatos környezet stb.),
> a környezet beépítési jellege (szabadon vagy beépített környezetben álló épület).

az épület adottságaitól (1. ábra):
> a vizsgált épületrész párkánymagassága (referenciamagasság),
> az épület jellege (zárt, illetve egy vagy több homlokzatán megnyitott),
> az épület alakja (párkány, attika, lekerekítés stb.),
> az épület arányai (b/d- a szélesség és hosszúság aránya; b/h- a szélesség és a magasság aránya).

A tényleges igénybevételt (szélteher) az érvényes tartószerkezeti méretelezésre vonatkozó szabvány (Eurocode) alapján kell meghatározni, de lehetséges – a biztonság javát szolgáló – egyszerűsített módszerrel is, amelyek a mindennapok tervezési és kivitelezési gyakorlatában könnyítést jelenthetnek.

1. ábra: Lapostető méreteinek meghatározása az Eurocode szerint

A tetőfelület egyes részeire ható szélszívás megállapításához az Eurocode szerinti tetőfelosztást (2. ábra) kell alkalmazni, amely megadja az egyes tetőfelületekhez rendelt alaki tényezőket. Az így kialakuló eltérő terhelésű tetőfelületek:
> általános (belső) mező (H),
> szélsősáv (G),
> sarokmező (E).
2. ábra: Lapostetők felületének felosztása a b oldalra merőleges szélterhelés esetén (Eurocode alapján)

Jelmagyarázat:

\[b, d \] a lapostető oldalhosszai
\[h \] az épület magassága - ha az épület attikával kialakított, akkor annak felső síkjáig
\[e \] b vagy 2h közül a kisebbik méret

Tetőszigetelések kialakítása során a szélszívás a mértékadó, így valamennyi oldalirány felől a szélszívásból adódó terhelőmezőket kell figyelembe venni (3. ábra).

Sarokmező csak a tetők külső sarkainál adódik, a belső sarkok esetén nem.

Több tetőből álló épületgyűettes esetén valamennyi tetőfelületen külön-külön, azok arányai függvényében kell elvégezni a felosztást. Kisebb felépítmények környezetében a szélső (perem-) sávoknak megfelelő besorolás szükséges.

3. ábra: Négyszögletű lapostetők felületének felosztása mindkét irányú szélterhelés esetén (Eurocode alapján)
Csapadékvíz elleni szigetelés szélszívás elleni rögzítése történhet:

- leterheléssel,
- ragasztással:
 - teljes felületű (beleértve a lángolvasztást is),
 - részleges (sávos vagy pontonkénti).
- mechanikai rögzítéssel,
- vegyes technológiával.

A leterhelő réteg anyaga lehet:

- 16/32 mm méretű, gömbölyűszemű, mosott kavics:
 - a kavics vastagsága akkor sem lehet 5 cm-nél kevesebb, ha a méretezés ennél kisebb tömeget eredményezne,
 - attika nélküli, alacsony (orom)szegéllyel kialakított tetőn 8 m épületmagasság felett nem készülhet kavicsleterhelés. A (orom)szegély legalább 5 cm legyen magasabb a leterhelőréteg felső síkjánál,
 - 8 m épületmagasságig a szélső és sarokmezőkben a leterhelő réteg nem lehet önmagában kavics. Lehet beton járólapappal kiegészített, vagy beton járólap önállóan alkalmazva. Kifelé lejtő kavicsleterheléses tető esetén az ereszszegegy mentén a járólap alatti kavics megtámasztására vízelvezetést biztosító, ún. kavicsfogó léct kell beépíteni.
- lapburkolat (pl. 40x40x5 cm méretű, fagyálló beton vagy műkö járólapok) kavics, közúzalék ágyazaton vagy a csapadékvíz elleni szigetelés felületére fektetett védő elválasztdó rétegen;
- nem hasznosított tető esetén az ökológiai védőrétegként kialakított extenzív vagy biodiverz zöldtető rétegei (számításuk száraz állapotban).

Mechanikai, illetve ragasztott rögzítés alkalmazása esetén a rögzítőelem és/vagy a ragasztóanyag gyártójának, valamint a szigetelőlemez gyártójának előírásait figyelembe kell venni.

Szélszívás ellen nem csak a csapadékvíz elleni szigetelést kell rögzíteni, hanem valamennyi tetőszigetelési réteget, amelyeknél ugyanazok a módszerek alkalmazhatók.

A rögzítési mód megválasztásánál javasolt figyelembe venni az alábbi szempontokat:

- szél elleni rögzítés méretezhetetlensége,
- födém terhelhetetlensége,
- szigetelés többletvédelme,
- aljzattal való együttdolgozás/függetlenség,
- az aljzat milyen rögzítésre alkalmaz,
- páratechnikai következmény.
4.2.4. Tetőlejtés

A tetőfelület lejtése legyen:

- legalább 2% általános felületen;
- legalább 2,5%, ha a hőszigetelés a csapadékvíz elleni szigetelés közvetlen aljzata;
- legalább 3% nagy lehajlású szerkezetek (pl. nagy fesztávú vasbeton, trapézlemez) esetén;
- legalább 4% fa vagy bármilyen fa alapú építőelemek aljzat esetén;
- vápában haladja meg az 1%-ot.

A fenti határértékeket a tető lehajlását követően is teljesülniük kell.

Lejtés nélküli tetőszerkezet kizárólag árasztásos tető esetén készíthető.

Amennyiben a fenti értékek nem teljesíthetők, a tető "különleges szerkezet"-nek minősül. Ezen esetben az ÉMSZ Bitumenes lemezekből valamint a Műanyag és gumialapú lemezekből készülő csapadékvíz elleni szigeteléseket tervezési és kivitelezési szabályai alapján megvalósítható minimális követelményeknél magasabb teljesítőképességű (több réteg, nagyobb rétegvastagság vagy az előírtnál magasabb műszaki jellemzők) vízszigetelést kell választani.

A tetőfelületek lejtését a tető jellege, tagoltsága, felépítményei, a vízelvezetés rendszere, a rétegfelépítés és a szigetelési technológia figyelembevételével kell megszerkeszteni.

4.2.5. Csapadékvíz elvezetés

A csapadékvíz elvezető hálózatot az MSZ EN 12056-3:2001 szerint kell méretezni.

Belső vízelvezetésű tetők vízelvezetésének alapelvei:

- minden tetőn legalább két vízelvezetési pont (pl. két víznyelő, vagy egy víznyelő és egy túlfolyó létesítése szükséges);
- a belső vízelvezetés jellegét tekintve gravitációs rendszerű vagy teltszelvényű lehet:

 - **Gravitációs rendszer esetén:**
 - egy víznyelőre eső vízgyűjtő terület nagysága ne haladja meg a 150 m²-t;
 - a víznyelő vízelvezetési keresztmetszetét méretezni kell.

 - **Teltszelvényű rendszer esetén:**
 - könnyűszerkezetes tetőn biztonsági túlfolyó létesítése minden esetben szükséges;
 - a vízgyűjtő terület nagysága 50-350 m² lehet.
a legnagyobb vízelvezetési hossz ne haladja meg a 12 m-t;

lejtés nélküli és/vagy fémlemezzel bélelt vápacsatorna létesítése nem megengedett. Lejtéssel kialakított vápacsatorna készítése sem javasolt. Amennyiben ez elkerülhetetlen, az érvényben lévő előírások szerint méretezni szükséges, valamint járható, tisztítható, fűthető módon, teljes értékű tetőszigetelésként kell kialakítani;

a csapadékeitőcső vízszintes elhúzása:

> hegesztett kötéssel födémben legfeljebb 1,2 m lehet;
> födém feletti vízszintes elhúzás kizárólag szigetelt szerkezet felett megengedett;
> huzamos emberi tartózkodásra, villamos berendezések elhelyezését szolgáló helyiségek légtérében csapadékeitőcső elhúzása nem megengedett. Amennyiben elkerülhetetlen, különleges kiegészítő intézkedések szükségesek.

4.2.6. Tűzvédelmi követelmények

Lapostető szerkezetek felújításakor az új épületekre vonatkozó tűzvédelmi követelményeket kell betartani.

4.2.6.1. Követelmények meghatározásának módja

Az épülmények tűzvédelmi követelményeit a hatályos OTSZ tartalmazza, míg az ennek megfelelő tűzvédelmi megoldásokat a Tűzvédelmi műszaki irányelvek. Az épületek tűzvédelmi követelményei a kockázati egységtől és a kockázati egységek kockázati osztályaitól függnek.

Egy épületen belül a kockázati egységek meghatározásának alapja az önálló rendeltetési egység, illetve azonos kockázati osztályokkal jellemezhető, szomszédos önálló rendeltetési egységek összevont egysége. Minden kockázati egységénél meg kell határozni a kockázati osztályokat az alábbi szempontok szerint:

- a kockázati egység legfelső építményszintjének szintmagassága;
- a kockázati egység legalsó építményszintjének szintmagassága;
- a kockázati egység legnagyobbefogadóképességű helyiségének befogadóképessége;
- a kockázati egységben tartózkodók menekülési képessége;
- tárolási rendeltetésű kockázati egység tárolóhelyiségeiben tárolt anyagok, termékek, tárgyak jellemzői;
- ipari, mezőgazdasági alaprendeltetés esetén a rendeltetés jellemzői.

A kockázat mértéke szerint az épület, önálló épületrész, a speciális épülmény és a kockázati egység az alábbi osztályokba tartozhatnak:

- nagyon alacsony kockázati NAK osztályba,
- alacsony kockázati AK osztályba,
- közepes kockázati KK osztályba,
- magas kockázati MK osztályba.
A tervezést az épülmény, az önálló épületrész egészére vonatkozó besorolás határozza meg, amely megegyezik a kockázati egységek osztályai közül a legszigorúbbal.

4.2.6.2. Tűzterjedési fokozatokra és a hőszigetelésre vonatkozó követelmények

A csapadékvíz elleni szigetelés, illetve a teljes tetőszigetelés az MSZ ENV 1187:2003 szerinti röptűzterjedési vizsgálat alatt két csoportba sorolható:

- **B{	extsubscript{roof}} (t1)**, amely teljesíti a vizsgálat követelményeit és
- **F{	extsubscript{roof}} (t1)**, amely nem teljesíti a vizsgálat követelményeit.

Az F{	extsubscript{roof}} (t1) besorolású csapadékvíz elleni szigetelés vagy tetőszigetelés kizárólag NAK és AK mértékadó kockázati osztályú épületek felett és 60 kg/m{	extsuperscript{2}} fölöti felülettőmegű térhelhatalomló tetőfödem esetén alkalmazható. Minden más esetben B{	extsubscript{roof}} (t1) az előírás. A tetőszigeteléseknek meg kell felelnie az MSZ EN 13501-5:2016 előírásainak is.

F tűzvédelmi osztályú anyag nem hasznosított lapostető szerkezetekbe nem építhető be.

A 60 kg/m{	extsuperscript{2}} alatti felülettőmegű zárófödémek jellemzően a trapézlemez és a fémfegyverzetű szendvicspanel szerkezetek. Trapézlemez fődémen felett a tetőszigetelés rétegrendjének kialakítása során az alábbiak betartása szükséges:

- csak kötött, a termék nemzeti műszaki értékelésében vagy a gyártói alkalmazástechnikai útmutatójában szereplő rétegek, anyagok alkalmazhatók a megjelölt paraméterekkel;
- a teljes rétegrend tűzállóságát alapvetően meghatározza a tetőfödém teherviselő rétegével közvetlenül érintkező párazáró réteg és a hőszigetelés.

Párazáró rétegként ezekben a szerkezetekben legfeljebb 0,25 mm vastag polietilén fólia vagy 0,12 mm vastag öntapadó alumínium fólia (legfeljebb 10500 kl/m{	extsuperscript{2}} fajlagos felületi fűtőértékű) alkalmazható. Párafékező tulajdonságú (50 < sd <1500) csapadékvíz elleni szigetelés esetén mindkét típusú anyag alkalmazható, míg párazáró (sd ≥ 1500) tulajdonságú csapadékvíz elleni szigetelés (pl. két réteg modifikált bitumenes vastaglemez) esetén csak az öntapadó alumínium fólia párazáró réteg felel meg. Bitumenes vastaglemez (pl. alumínium fólia hordozórétegű 4-5 mm vastag) párazáró réteg alkalmazása nem megengedett.

A jelenleg rendelkezésre álló, már lefolytatott vizsgálatok alapján alkalmazható hőszigetelések:

- **A{	extsubscript{2}}-s{	extsubscript{1}}d{	extsubscript{0}}** tűzvédelmi osztályú kőzetgyapot hőszigetelés REI30, esetleg REI 60 tűzállósáig;
- **B{	extsubscript{s}}-d{	extsubscript{0}}** tűzvédelmi osztályú hőre keményedő műanyaghabok (PIR, fenol) REI 15, esetleg REI 30 tűzállósáig;
- hőre lágyuló műanyaghab hőszigetelés alkalmazása trapézlemezen csak vegyes rétegrendben javasolt: a párazáró réteg felett legalább 5 cm kőzetgyapot hőszigetelés elhelyezése szükséges, felette helyezhető el az expandált polisztrolhab hőszigetelés. Tűzvédelmi osztály jellemzően: **B{	extsubscript{s}}-d{	extsubscript{0}}** tűzállósági határérték általában REI 15.
4.2.6.3. Tűzterjedési gátrakra vonatkozó követelmények

Tetőskból kiálló tűzterjedési gátrak kialakítása esetén az alábbiak betartása szükséges:

- az éghető anyagú vízszigetelést meg kell szakítani;
- a tűzterjedési gát \((2xG_{12} + G_{11} \geq 60 \text{ cm})\) figyelembe vehető szakaszain (vízszintes szakasz \(G_{11}\), függőleges szakasz \(G_{12}\)) csak nem éghető alapszerkezet, hőszigetelés és burkolat alkalmazható.

A tetőskban tartott tűzterjedési gát szélessége \(\geq 90 \text{ cm}\).

4.3. Jogszabályi követelmények

4.3.1. Általános - jellemzően tervezési - jogszabályi követelmények

A tetőszigetelések felújításának kialakítása során számos általános és a védelemre vonatkozó konkrét előírást kell figyelembe venni. Ilyenek az alábbiak:

1997. évi LXXVIII. törvény az épített környezet alakításáról és védelméről

3. § (1) „Az épített környezet alakítását és védelmét ... a jogszabályokban előírt építészeti, településépítési, műszaki, biztonsági, egészségügyi, rendeltetési és használati, továbbá környezet- és természetvédelmi követelményekkel összhangban ... kell megvalósítani.”

31. § (2) „Az építmények és azok részeinek építése, bővítése, felújítása, átalakítása, helyreállítása, korszerűsítése során érvényre kell juttatni az országos településrendezési és építési követelményekről szóló kormányrendeletben meghatározott alapvető követelményeket.”

(6) „Az építésügyi műszaki irányelvek kidolgozásáért felelős bizottság kidolgozza az épített környezet létrehozása és fenntartása érdekében végzett tervezési, építési és üzemeltetési tevékenység területére kiterjedő, jogszabály, szabvány által nem szabályozott, azokkal nem ellentétes követelményeket, tevékenységekre vonatkozó módszereket tartalmazó építésügyi műszaki irányelveket. Az építésügyi műszaki irányelv alkalmazása önkéntes.”

(7) „Amennyiben az építésügyi műszaki irányelv által nem szabályozott területen jogszabály vagy szabvány kerül kiadásra, az építésügyi műszaki irányelvet vissza kell vonni.”

253/1997. (XII. 20.) Korm. rendelet az országos településrendezési és építési követelményekről

50. § (2) „Az ... építményt és annak részeit a rendeltetési céljának megfelelően, és a helyszíni adottságok figyelembevételével kell megvalósítani úgy, hogy az ... ne károsítsa a szomszédos beépítést és annak építészeti jellegzetességeit, (illetve) ... tegye lehetővé az építészeti örökség és az építészeti értékek megóvását...”

(3) „Az építmények meg kell felelnie a rendeltetési célja szerint ... az állékonyság és a mechanikai szilárdság, ... a higiénia, az egészség- és a környezetvédelem, a biztonságos használat ..., az élet- és vagyonvédelem... követelményeknek.”
(3a) „Az alapvető követelmények kielégítését a vonatkozó magyar nemzeti szabvány alkalmazásával vagy más, a követelmények legalább ezzel egyenértékű teljesítését biztosító megoldással lehet teljesíteni....”

(5) „Az építményt és annak részét, szerkezetét, beépített berendezését és vezetékrendszerét úgy kell tervezní és megvalósítani, hogy azok karbantartás, korszerűsítés, esetleges csere céljából - a csatlakozó szerkezetek állékonyságának veszélyeztetése nélkül - hozzáférhető legyenek, valamint azok a magyar nemzeti szabványok által megkövetelt biztonsággal feleljenek meg a tervezett vagy becsült élettartamuk alatt - a rendeltetési céljuknak megfelelő biztonsággal - az állékonyság és a mechanikai szilárdság, valamint a rendeltetésszerű és biztonságos használat követelményeinek, nyújtson védelmet a várható hatások okozta ártalmak ellen az építmény rendeltetésszerű használata során, és feleljenek meg és álljanak ellen a várható mértékű terheléseken, hatásoknak.”

53. § (1) „Az építményt és részei, az önálló rendeltetési egységeket, helyiségeket úgy kell megvalósítani, ehhez az építési anyagot, épületszerkezetet, beépített berendezést és vezetékhálózatot úgy kell megválasztani és beépíteni, hogy a környezet higiéniját és a rendeltetésszerű használat egészségtételét ne veszélyeztesse az építmény felületein káros nedvesedés keletkezése, megmaradása ..., vegyi és korróziós hatás, biológiai kártevők megtelepedése, elszaporodása....”

(2) „Az építmény megvalósítása és rendeltetésszerű használata során biztosítani kell a helyiségek nedvesség (csapadékvíz, talajvíz, talajpára, üzemi víz stb.) elleni védelmét, a páratartalmat kicsapódása elleni védelmét...”

56. § (1) „Az építményt és annak részeit úgy kell tervezní és megvalósítani, ehhez az építési terméket megválasztani és beépíteni, hogy a rendeltetésszerű és biztonságos használathoz szükséges energiafelhasználás a lehető legkisebb legyen”

(2) „Az építmény térelhatároló szerkezei és épületgépészeti berendezései - az energetikai, a hőtechnikai és a tűzvédelmi előírások megfelelően - együttesen legyenek alkalmasak a helyiségek rendeltetésének megfelelő, előírt légállapot biztosítására.”

57. § (1) „Az építményt és részeit védni kell az állékonyságot, mechanikai szilárdságot és a rendeltetésszerű használatot veszélyeztető vegyi, korróziós és biológiai hatásoktól, továbbá a víz, a nedvesség (talajvíz, talajnedvesség, talajpára, csapadékvíz, üzemi víz, pára stb.) káros hatásaival szemben.”

58. § (3) „Az építmény lábazatát a terepcsatlakozás felett legalább 0,30 m magassággal szilárd, fagyálló anyagból kell készíteni, vagy fagyálló burkolattal kell ellátni.”

77. § (4) „Csatornavezetéket nem szabad vezetni, csőkapcsolatot, tiszttöidotomot nem szabad létesíteni:

a) huzamos tartózkodásra szolgáló helyiségek légterében, ezen helyiségek födémeben, padozatában, továbbá megfelelő hangszigetelés nélkül önálló rendeltetési egységek közötti elválasztófalten (pl. lakáselválasztó falban),

b) villamos kezelőhelyiségekben és ezek falában, födémeben, padozatában, továbbá

c) ejtóvezetéket zajszigetelés nélkül lakószobák falában, illetőleg hő- és hangszigetelés nélkül építmények határoló (homlokzati) falában, beleértve a tűzfalat is.
266/2013. (VII. 11.) Korm. rendelet az építésügyi és az építésügyvel összefüggő szakmagyakorlási tevékenységekről

16. § (3) „A tervezési programban … a tervezés tárgyától és nagyságrendjétől függően ismertetni kell ... az elvárt - az OTÉK előírásainak megfelelő vagy attól szigorúbb - követelményeket, beleértve az élettartalmi igényeket, az elvárt követelményeknek való megfelelőség igazolásának módját, az alkalmazandó szabványok vagy azokkal egyenértékű számítási-mérétezési előírások és hivatkozások, jogszabályok, előírások, szabályzatok körét ..., műemlék és nyilvántartott műemléki érték esetén az értéket és az építéstörténeti tudományos dokumentáció alapján rögzített műemlékvédelmi szempontokat, az egyéb meghatározó követelmények általános szempontjait…”

275/2013. (VII. 16.) Korm. rendelet az építési termék építménybe történő beépítésének és beépítésének, ennek során a teljesítmény igazolásának részletes szabályairól

3. § (1) „Az építési termék akkor teljesíti az épített környezet alakításáról és védelméről szóló 1997. évi LXXVIII. törvény (a továbbiakban: Étv.) 41. § (1) bekezdésében foglalt követelményeket, ha a tervező az építészet-műszaki dokumentációban ... megállapítja meg a beépítendő építési termékek alapvető jellemzői tekintetében azok elvárt teljesítményét, és a beépítés során a tervező előírásai mellett, figyelembe veszik az építési termék gyártójának a termék teljesítményére vonatkozó nyilatkozatát és a tárolására, szállítására, beépítésére vonatkozó előírásait is.”

(2) „Az építési termék elvárt műszaki teljesítménye a teljesítmény alapján hozott megfelelőség adatokának esetén az építési termék gyártói teljesítménynyilatkozat, egyedi, hagyományos, természetes, bontott vagy műemléki védelem alatt álló építményebe tervezett építési termék beépítése esetében a felelős műszaki vezető építési naplóban az építőipari kivitelezési tevékenységről szóló kormányrendelet szerint a nyilatkozattal ... igazolja.”

(4) „Ahol jogszabály olyan épületszerkezettel szemben állapit meg követelményt, amely önmagában nem egy építési termék vagy nem egy készlet elemeinek összeszerelésével jön létre, hanem több építési termék előírásai mellett, az építési helyszínen, az építési tevékenység során keletkezik, akkor a követelmény
teljesítsését a tervező az építészeti-műszaki dokumentációban az adott szakterület műszaki előírásai szerint igazolja.”

4. § (1) „A tervező az építőménybe betervezett építési termék elvárt műszaki teljesítményét az építési termék építményben való felhasználásának módja, az építési termék várható élettartama alatt az építésből, az építmény használatából és az üzemeltetéséből származó hatások, az építményt érő várható hatások, és a jogszabályokban az építési termékre, valamint a tervezett épületszerkezetre vonatkozóan meghatározott követelmények és szakmai szabályok figyelembevételével határozza meg.”

4.3.2. Kivitelezőkre vonatkozó szavatossági, valamint jótállási kötelezettségek

A kivitelezői szavatosságra és jótállásra az alábbi jogszabályok vonatkoznak:

2013. évi V. törvény a Polgári törvénykönyvről (Ptk.) XXIV. fejezet

6:157. § [Hibás teljesítés]
6:158. § [Hibás teljesítési vélelem]
6:159. § [Kellékszavatossági jogok]
6:160. § [Áttérés más kellékszavatossági jogra]
6:161. § [Eltérés a jogosult által megjelölt kellékszavatossági jogtól]
6:162. § [A hiba közlése]
6:163. § [A kellékszavatossági igény elévülése]
6:164. § [A szavatossági jogok érvényesítése kifogásként]
6:165. § [Az érvényesített szavatossági igény terjedelme]
6:166. § [Költségviselés]
6:167. § [A kötelezett gazdagodási igénye]
6:168. § [Termékszavatossági igény]
6:169. § [Költség és igényérvényesítési határidők]
6:170. § [Termékszavatosság tulajdonosváltozás esetén]
6:171. § [Jótállás]
6:172. § [Jótállási jogosultság tulajdonosváltozás esetén]
6:173. § [A jótállási igény érvényesítése]
6:174. § [Kárterítés kellékhibás teljesítés esetén]
6:177. § [Hibás teljesítés eredmény létrehozására irányuló szerződésekknél]
6:178. § [Hibás teljesítés használatra vagy hasznosításra irányuló szerződésekknél]
181/2003. (XI. 5.) Korm. rendelet a lakásépítéssel kapcsolatos kötelező jótállásról

1., 2., 3., 4., 5., 6. § és

1. számú melléklet a 181/2003. (XI. 5.) Korm. rendelethez

2. számú melléklet a 181/2003. (XI. 5.) Korm. rendelethez

3. melléklet a 181/2003. (XI. 5.) Korm. rendelethez

4. melléklet a 181/2003. (XI. 5.) Korm. rendelethez

249/2004. (VIII. 27.) Korm. rendelet az egyes javító-karbantartó szolgáltatásokra vonatkozó kötelező jótállásról

1., 2., 3., 4., 5. § és

Melléklet a 249/2004. (VIII. 27.) Korm. rendelethez

Összefoglalva az építési tevékenység végzésére vonatkozóan a hibás teljesítésnél a kellékszavatosság két lépcsős szabályai szerint szükséges eljárni: elsőként a hiba kijavítását vagy a kicserélést kell megpróbálni, majd utána következik csak az ellenszolgáltatás leszállítása, a mással való kijavítatás, és csak ezután következhet a szerződéstől való elállás.

Az építési tevékenységet végzők számára fontos kérdés a kellékszavatossági igény időtartamának a hosszúsága. Általános esetben fogyasztó és vállalkozás közötti szerződéseknél két év az elévülési idő.

Ugyanakkor, ha a szolgáltatott dolog ingatlan, akkor öt év az elévülési idő.

Az építési tevékenységet végzőket a kellékszavatosság érvényesítése során még érintheti az elkülönülésre vonatkozó szabály is, hogy ha a szavatossági igényt a dolognak - a megjelölt hiba szempontjából - elkülöníthető része tekintetében érvényesítik, a szavatossági igény a dolog egyéb részeire nem minősül érvényesítettnak.

5. **TERVEZÉSI ALAPELVEK**

A tetőszigetelések szerepe:

- a belső terek csapadék elleni védelme;
- megfelelő beltéri komfort (páratartalom, hőmérséklet, zaj elleni védelem) biztosítása;
- a teherhordó-térelhatároló szerkezeteket állagvédelme a támadó nedvességtől (korrózió elleni védelem, a szerkezeten belüli és a felületi páralecsapódás megakadályozása, a tetőszigetelés egyes rétegeinek védelme stb.).

Tetőszigetelések szerepüket minden esetben kizárólag vízhatlan csapadékvíz elleni szigetelés kialakításával teljesítik.
5.1. Általános felújítási alapelvek

A felújítás koncepciója és a tényleges megoldási lehetőségek a meghibásodásokat kiváltó okok (lásd 3.3. fejezet) lehető legteljesebb mértékű kizárásán alapulva fogalmazhatók meg. Statikai okokra visszavezethető szerkezeti problémák esetén a tetőszigetelés felújítás kizárólag a meghibásodást kiváltó okok megszüntetése után készíthető.

A felújítás tervezése során meg kell határozni az igénybevételi fokozatokat, a kockázati szintet (lásd 4.2.1. fejezet), majd a hatások (lásd 4.1. fejezet) és követelmények (lásd 4.2. fejezet) összegzése után alakítható ki az elvi rétegrend és a konkrét anyagokkal a rétegterv.

A tetőszigetelésnek a felújítás során is teljesítenie kell az alábbi követelményeket:

- a kivitelezési munkák alatt az épület a csapadékvíz hatásától minél inkább védett legyen;
- közbenső szinten fekvő tetőfelület és az épület más felújítási munkái során, főleg olyan esetben, amely állványozási munkákat is igényel, a csapadékvíz elleni védelme a rendeltetésnek megfelelő legyen. A tetőfelületen felületfolytonosításhoz hideghegesztő folyadék, kétoldali ragasztószalag vagy a csapadékvíz elleni szigetelése megfelelő anyagokkal, esetleg a fóliabádog használata javasolt;
- a csapadékvíz elleni szigetelést kész állapotban ne érje mechanikai károsodás, tehát minél védettebb helyzetbe kerüljön;
- a növényzetet telepített tetőszőrkezetek esetén a szigetelést a növények gyökereinek mechanikai hatása és a gyökérsavak ne tegyék tökére;
- az alacsonyabban fekvő tetőfelületek esztétikai kialakítása, mechanikai védelme a rendeltetésnek megfelelő legyen.

A felújítási alapelvek több technológiáival is teljesíthetők, de a műszaki-gazdasági optimumot javasolt keresni, amely egyben meghatározza a legmegfelelőbb rögzítési technológiát is. A rögzítés megválasztásával figyelembe kell venni:

- a teljes felületen ragasztott vagy lángholvasztással hegesztett szigetelések általánosságban a leginkább érzékenyek az aljzat minden mozgására, változására. A tetőrétegek közötti gőznyomások kiegyenlítését az ilyen megoldások esetén a legkevésbé megoldható;
- a szabadon fektetett lemezekből készülő csapadékvíz ellenti szigetelések megbízhatóan kiegyenlítik a gőznyomást és a legkevésbé érzékenyek az aljzati mozgásokra;
- a csapadékvíz elleni szigetelések védelmét a takart (fordított vagy duó-tető, kavics- vagy járólap leterhelés, ökológiai védőréteg stb.) rétegfelelődítések biztosítják leginkább, de az ebből adódó többleterhelések felvételére a szerkezeteket ellenőrizni, illetve méretezni kell.

További szempontok:

- a vízszigetelési technológia egy rendszer legyen, azaz a kiegyensúlyozott elemként (pl. fóliabádog, felületfolytonosításhoz hideghegesztő folyadék, kétoldali ragasztószalag) is a gyártói ajánlásknak megfelelő, rendszersaját elemek legyenek alkalmazva;
A felújítás során a tető beázásmentességét üzemeltetett épület esetében állandó jelleggel biztosítani kell;

- a meglévő anyagok és rétegek állapotától függően meg kell vizsgálni a bontások mértékét. A meglévő rétegfelépítés bontása csak a műszakilag szükséges mértékig javasolt az alábbiak miatt
 - a bontott anyag mennyiségenek csökkentése,
 - gazdaságosság,
 - a kivitelezés közbeni beázásmentesség biztosítása,
 - környezetvédelmi okok.

A bontás mértékét a teherhordó szerkezet teherbíró képessége is befolyásolja.

- meglévő-megmaradó tetőszigetelések esetén csak olyan anyagú új hő- és/vagy csapadékvíz elleni szigetelés alkalmazható, ahol a régi és az új réteg között anyagösszetevőmélység nem lép fel, illetve ahol ez kiegészítő rétegek alkalmazásával megakadályozható;

- a felújítás során törekedni kell a páradiffúzió szempontjából kifelé nyitott rétegrend kialakítására, valamint gondoskodni kell a tetőszigetelés rétegei közé bezárt pára gőznyomásának levezetéséről, kiegyenlítéséről.

5.2. Szükséges alapadatok

Tetőszigetelések felújítása előtt minden esetben szükséges feltárásos vizsgálat.

Ezen kívül javasolt készíteni:

- diagnosztikai vizsgálatot, szükség esetén állapotrögzítő szakértői véleményt a hibaokok feltárásával;

- lapostető felújítási (kiviteli) tervet a felújítási célok (lásd 5.3. fejezet), a megoldás egyértelmű megadásával.

A diagnosztikai vizsgálat és állapotfelmérés legalább az alábbiakra terjedjen ki:

- tetőszigetelés feltárása;

- az egyes rétegek jellemzőinek (anyag, vastagság stb.), rögzítési módjuk, valamint teljesítőképességük megállapítása;

- a szerkezet, a tetőfelépítmények, csatlakozások geometriája;

- a beázás okainak, a szigetelés hibáinak szemrevételezéssel történő megállapítása, feltárása;

- a tető rétegei károsodtak-e a beázás miatt, milyen mértékű az egyes rétegek átnedvesedése (Adott esetben nedvességtartalom vizsgálat lehet szükséges)?;

- van-e lég- és párazáró réteg, milyen sikon?;

- meg kell győződni arról, hogy a felújított tetőben esetleg megmaradó rétegek, anyagok és szerkezetek továbbra is képesek-e megfelelni a velük szemben támogatott követelményeknek;
NEM HASZNOSÍTOTT LAPOSTETŐK FELÚJÍTÁSÁNAK TERVEZÉSE ÉS KIVITELEZÉSE

A lapostető felújítási koncepciója, terve - többek között - térjen ki az alábbiakra:

- az igénybevételi fokozatoknak és a kockázati szintnek megfelelő rétegtervi felújítási javaslat(o(k), amelyet meghatároz
 - a hatásokkal és követelményekkel összevetett hibaokon, a tetőrétegek állapotán alapuló teljesítőképesség;
 - az eltávolítandó és megmaradó rétegek;
 - az anyagok összeférhetőségének vizsgálata.
- általános koncepció a szükséges bontásokra, csapadékvíz elleni ideiglenes védelemre, az aljzatelőkészítésre, a szigetelés vonalvezetésére, az energetikára, valamint a szélszívással elleni védelemre vonatkozóan;
- a lejtések, a vízelvezetés esetleges korrekciónja, víznyelők áthelyezése vagy újabb víznyelő, túlfolyó, esetleg vízköpő tervezése;
- a meglévő szerkezetet figyelembe véve az új tetőszigetelés szélszívással szembeni védelme, a rögzőtés módja;
- az alkalmazandó anyagok és technológia kiválasztása, leírása;
- részletek (csatlakozások, különböző technológiák felületfolytonosítása, csőátvezetések, hézagképzések stb.) megoldása;
- kiegészítő hőszigetelés esetén meg kell vizsgálni, hogy a megnövekedett rétegvastagság miatt a csatlakozó szerkezetek magassága megfelelő-e vagy azokat meg kell emelni?;
- páratechnikai ellenőrzés;
az új rétegek többletsúlya miatt a teherhordó szerkezeti ellenőrzése;

• szükséges kiegészítő intézkedések (hulladékelszállítás, villámvédelem, leesés elleni védelem stb.);

• felújítás esetleges ütemezése stb.

5.3. Felújítási célok

5.3.1. Csapadékvíz elleni szigetelés felújítása

Csapadékvíz elleni szigetelés felújítására elsősorban a

• megelőző védelem, karbantartás (lásd 3.2. fejezet)

• szigetelés öregedése, avulása (lásd 3.3.4. fejezet)

 céljából kerülhet sor.

A felújítás csak akkor korlátozható új csapadékvíz elleni szigetelés beépítésére, ha

• a meglévő-megmaradó rétegek (hőszigetelés, páratechnikai rétegek stb.) képesek továbbra
 is feladatuk ellátására;

• más igény a tetőszigeteléssel szemben nem merül fel;

• a meglévő-megmaradó csapadékvíz elleni szigetelés alkalmazza az új szigetelés aljzatát (lásd 5.6., 5.8. fejezet).

Amennyiben a tetőszigetelés huzamos emberi használatú, fűtött tér felett található, javasolt a komplex
felújítás (lásd 5.3.3. fejezet) meggyorsítása.

5.3.2. Energetikai felújítás

Meglévő tetőszigetelés esetén kiegészítő hőszigetelés elhelyezésére korszerűsítés, az energetikai követelmények változása (lásd 3.2. fejezet) és rendeltetésváltás (lásd 3.4. fejezet) esetén lehet szükség.

Amennyiben a tetőszigetelés felújítása mindösszesen az energetikai felújításra korlátozódik, akkor tetőszigetelés kizárólag duó-tetőként, szélszívás elleni leterheléssel készíthető. A felújítás csak akkor korlátozható kiegészítő hőszigetelés beépítésére, ha

• a tetőszöveget teherhírásra a leterhelés fogadásához megfelelő;

• a csapadékvíz elleni szigetelés kifogástalan állapotú és teljesítőképessége a hőszigetelés elvárt
 élettartamáig vélelmezhetően megmarad;

• a meglévő-megmaradó rétegek (hőszigetelés, páratechnikai rétegek stb.) képesek továbbra
 is feladatuk ellátására;

• a beépíthető hőszigetelés legkisebb vastagsága korlátozott, ha csak a meglévő csapadékvíz elleni
 szigetelés tekinthető páratechnikai rétegnek. Mivel a meglévő-megmaradó csapadékvíz elleni
 szigetelés legalább páratféléz hugondoságú, így kiegészítő hőszigetelés csak a hővezetési ellenállások
 arányában alkalmazható. Méretezés hiányában a meglévő-megmaradó csapadékvíz elleni szigetelés
alatti rétegek hővezetési ellenállása (R_1) és az afölött elhelyezett rétegek hővezetési ellenállásnak (R_2) aránya legalább

\[R_1 : R_2 = 1 : 4 \ (1 : 3) \]

- más igény a tetőszigeteléssel szemben nem merült fel;
- a meglévő-megmaradó csapadékvíz elleni szigetelés alkalmas az új hőszigetelés aljzatául;
- a tető lejtése és a vízelvezetés megfelelő.

Amennyiben a tetőszigetelés huzamos emberi használatú, fűtött tér felett található, javasolt a komplex felújítás (lásd 5.3.3. fejezet) meggondolása.

5.3.3. Komplex felújítás, részleges bontás

A tetőszigetelés meghibásodása, korszerűsítés, rendeltetés módosítás és/vagy a kockázati szint változása stb. (lásd 3.2., 3.3., 3.4. fejezet) miatt válhat szükségessé a tetőszigetelés komplex felújítása, amely magában foglalja a tetőszigetelés energetikai korszerűsítését és a csapadékvíz elleni szigetelés teljes felújítását minimális vagy részleges bontás mellett.

Az adott megoldás elsődleges célja a bontások lehetőség szerinti csökkentése (lásd 5.1. fejezet). Ezzel a meglévő-megmaradó vízszigetelés a felújítás idejére az ideiglenes csapadékvíz elleni védelmet is biztosíthatja.

A tetőszigetelés új rétegfelépítését meghatározza:

- a szigetelés rögzíthetősége (a födém teherbírása, megfelelő hőszigetelési réteg, illetve a ragasztáshoz megfelelő aljzat és a meglévő rétegek kielégítő szélszívás elleni rögzítettsége);
- a meglévő lejtés mértéke, megfelelősége;
- a meglévő-megmaradó tetőszigetelési rétegek állapota;
- a tetőszigetelés páratechnikai működése.

Az eredeti szerkezeti hibákat (pl. gőznyomás kiegyenlítés-levezetés hiánya, nem megfelelő lejtés) meg kell szűntetni.

A műszaki szempontból indokolt rétegeket el kell bontani. Ilyenek lehetnek:

- egyenes rétegfelépítés esetén a tönkrement csapadékvíz elleni szigetelés, az átáztott hőszigetelés;
- fordított tető vagy duó-tető esetén a hőszigetelés, esetleg visszahelyezéssel stb.

A meglévő rétegfelépítésektől és a meglévő-megmaradó rétegektől függően számos elvi rétegfelépítési lehetőség adódik (lásd 6.1., 6.2., 6.3. fejezet). Néhány jellemzően előforduló rétegfelépítés kialakításának feltétele:

- tetőszigetelések egyenes rétegrendként történő felújítása esetén:
> ha a meglévő-megmaradó rétegek megfelelő teljesítőképességűek, akkor ezekre közvetlenül építhetők az új rétegek;

> egyenes vagy duó-rétegrendű tető esetén a beépíthető hőszigetelés legkisebb vastagsága korlátozott, ha csak a meglévő csapadékvíz elleni szigetelés tekinthető páratechnikai rétegnek. Mivel a meglévő-megmaradó csapadékvíz elleni szigetelés legalább párafékező tulajdonságú, így kiegészítő hőszigetelés csak a hővezetési ellenállások arányában alkalmazható (lásd 5.3.2. fejezet);

> amennyiben a tetőszigetelési rétegek között nedvesség található, azt kezelni kell (lásd 5.4.1., 5.4.2. fejezet);

> az új csapadékvíz elleni szigetelés az eredeti megoldástól független nyújtható lehet.

> egyenes vagy fordított rétegfelépítésű tetőszigetelés felújítása kialakítható duó-tetőként, amennyiben a meglévő rétegek megfelelő teljesítőképességűek. Ennek során a meglévő tetőszigetelési rétegekre készül az új csapadékvíz elleni szigetelés, majd erre a leterheléssel rögzített extrudált vagy formahabosított expandált polisztirolhab hőszigetelés. Ez a megoldás csak megfelelő teherbírásváltó zárófodém esetén alkalmazható.

5.3.4. Teljes bontás, új rétegfelépítés

A tetőszigetelési rétegek fődémig vagy a fődémre készített lejtést adó betonig történő elbontása és új anyagokkal történő újjáépítése indokolt, ha

> a rétegfelépítés elvi hibás;

> a hibák okai kisebb mértékű beavatkozással nem szüntethetők meg, például

> a teherhordó szerkezet túlterhelő;

> a meglévő hőszigetelés tér- és formatváltozást szenvedett (összerosadott, felpúpósodott stb.) a nedvesség hatására;

> hőszigetelésre ragasztott csapadékvíz elleni szigetelés esetén, amennyiben a tönkrement vízszigetelés a hőszigetelés sérülése nélkül nem bontható;

> rétegek erős átnedvesedése;

> korhadó anyag megléte (pl. parafa);

> kiszáradásra nem képes anyag (pl. perlit) esetén.

> a teherhordó szerkezet felújítása során pl. korrozióvédelmi munkákra is szükség van.

Az új rétegrend megválasztása során a teherhordó szerkezet teherbírásváltó figyelembe kell venni, ehhez meg kell állapítni a meglévő-elbontandó rétegrendek fajlagos tömegét. Kritikus teherbírássot esetén súlyegyezésre kell törekedni.

Meglévő fődémre készített új tetőszigeteléseket az új tetőszigetelésekre vonatkozó elvek alapján kell megtervezni, elkészíteni az ÉMsz Tetőszigetelések tervezési és kivitelezési irányelveinek és a Bitumenes lemezektől valamint a Műanyag és gumialapú lemezektől készülő csapadékvíz elleni szigetelések tervezési és kivitelezési szabályainak megfelelően.
5.4. Épületfizikai elvek

5.4.1. Átnedvesedett anyagok megtarthatósága

Meghibásodott csapadékvíz elleni szigetelés esetén a csapadék, míg meghibásodott vagy hiányzó pára-
technikai rétegek esetén a pára a rétegrendbe hatolva az egyes rétegek átnedvesedését okozhatja.

A tetőszigetelés rétegeinél az átnedvesedés mértékét, a telítettséget vizsgálni kell:

» szemrevételezéssel
 » van-e szabad víz a rétegek között?;
 » a kivett anyagból nyomás hatására távozik-e víz?;
 » ha a feltárásban nedves réteg található, a feltárást több helyen meg kell ismételni annak tisztázására, hogy a nedvesedés folszerű-e vagy nagy, esetleg teljes felületen kiterjedt-e?.

» szükség esetén laboratóriumi vizsgálattal
 » a telítettség mértékét,
 » a nedvességtartalom miatti súlynövekedést,
 » a figyelembe vehető hővezetési tényező értékét (λ-érték) elsősorban hőszigetelő tulajdonságú rétegek esetén stb.

A diagnosztikai vizsgálatok alapján tervezői felelősség annak eldöntése, hogy – elsősorban a feltöltés jellegű rétegek, hőszigetelés közül – a nedvességtartalom, telítettség függvényében mely rétegek tarthatók meg vagy melyeket kell elbontani.

Az egyes rétegek megtarthatóságát befolyásolja a nedvesedés mértéke:

» kis felületet érintő és jól lokalizálható átnedvesedés esetén a rétegek foltokban történő, részleges bontása lehetséges;

» erősen átnedvesedett vagy vízzel telített rétegek:
 » szemrevételezés alapján ilyenek tekinthetők azok a rétegek, amelyekben szabad víz látható vagy nyomás hatására víz jön ki belőle stb.;
 » ezeket a rétegeket el kell bontani, mert kiszáradásuk nem biztosítható;
 » a megmaradó szerkezetek (födém, lejtést adó réteg, feltöltés stb.) állapotát ellenőrizni kell, mivel a rétegrendbe bejutó víz az egyes szerkezetek korrózióját, teljesítőképességük csökkenését, tönkremenetelét okozhatja.

» enyhén átnedvesedett rétegek:
 » ilyen rétegeknek tekinthetők azok a rétegek, amelyek nedvességtartalma nem haladja meg jelentősen a gyakorlati nedvességtartalmat (1. táblázat). A mért nedvességtartalmat javasolt összehasonlítani az anyaggyártók által megadott lehetséges nedvességtartalommal;
NEM HASZNOSÍTOTT LAPOSTETŐK FELÚJÍTÁSÁNAK TERVEZÉSE ÉS KIVITELEZÉSE
ÉPÍTÉSÜGYI M ŰSZAKI IRÁNYELV

ANYAG NEDVESSÉGTARTALOM

<table>
<thead>
<tr>
<th>ANYAG</th>
<th>NEDVESSÉGTARTALOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>magas pórustartalmú könnyübeton</td>
<td>4-5 V%</td>
</tr>
<tr>
<td>szervetlen anyagú laza feltöltés</td>
<td>5 m%</td>
</tr>
<tr>
<td>üveg- és közétyagapot hőszigetelés</td>
<td>5 m%</td>
</tr>
<tr>
<td>habüveg</td>
<td>~ 0 m%</td>
</tr>
<tr>
<td>fa és faalapú anyagok</td>
<td>15 m%</td>
</tr>
<tr>
<td>növényi szálasanyag hőszigetelések</td>
<td>15 m%</td>
</tr>
<tr>
<td>parafa hőszigetelés</td>
<td>10 m%</td>
</tr>
<tr>
<td>poliszirol, poliuretánhab hőszigetelés</td>
<td>5 m%</td>
</tr>
</tbody>
</table>

1. táblázat: Építőanyagok jellemző nedvességtartalma a gyakorlatban (DIN 4108 4. rész A1 alapján)

> ezek a rétegek abban az esetben tarthatók meg, ha egyéb körülmény az eltávolításukat nem
indokolja és

> kiszáritásuk biztosítható:

1. mesterséges módon

Előzetes szárítás esetén a tényleges kiszáradásról meg kell győződni.

2. természetes úton

A természetes szárítás jellemzően laza feltöltéses rétegek és szálas hőszigetelések esetén működik, míg vékony rétegek esetén nem.

A szárítás a rétegek perforálásával érhető el. Ennek megtervezése tervezői feladat. Meg kell adni a perforáció átmérőjét, mélységét, kiosztását. A perforáció sávos felvágással, valamint a gyűrűrézek, felhőlyagadások kivágásával is helyettesíthető. A perforált rétegrendet tervezetlen ki kell szellőztetni páradiffúzió szempontjából nyitott kialakítással vagy páraszellőzők alkalmazásával (lásd 5.4.2. fejezet), salakszellőzők helyett páraszellőző beépítésével.

> a bentmaradó nedvesség az új tetőszigetelésben nem jár káros következménnyel (lásd 5.4.2. fejezet).

> a hőszigetelést csekély nedvességtartalom esetén is el kell bontani, ha tervogat- és/vagy nyomószilárdság változást szenvedett;

> perlit vagy perlítbeton kiszáritása nem biztosítható, megtartása tervezői döntés.

A meglévő, megtartható állapotú csapadékvíz elleni szigetelés a belső terek kivitelezés közbeni védelméhez nagymértékben hozzájárul.

5.4.2. Páradiffúzió

A megmaradó és az új rétegrendet páradiffúzió szempontjából elemezni kell (lásd 4.2.2.2., 5.4.2. fejezet).

Meglévő csapadékvíz elleni szigetelés páratechnikai rétegként akkor vehető figyelembe, ha

> felületfolytonos vagy azzá tehető;
páradiffúziós ellenállása olyan mértékű, hogy a párávándorlást megakadályozza:
- csak a fémfólia-betétes bitumenes lemezek tekinthetők párazárónak;
- bitumenes lemezek akkor tekinthetők párazárónak, ha a fellelhető műszaki adatlapok ezt igazolják;
- műanyag- és gumialapú szigetelőlemezek, valamint bitumenes lemezek megfelelő írat nélkül legfeljebb párafékező tulajdonságúnak tekinthetők.

Egyenes és duó rétegrend esetén meglévő-megmaradó párazáró réteg hiányában a csapadékvíz elleni szigetelés alatt a belső térből érkező párafeltöltéhető, amely páralecsapódáshoz és ezáltal beázás jellegű tünetekhez vezethet.

Ennek megakadályozására ökolózabályként az alábbi intézkedéseket kell tenni:
- a felújított rétegrendben párazáró tulajdonságú réteg nem kerülhet a belső tértől számítva annál kintebbi síkról, mint ahol a tervezett rétegrend összes hővezetési ellenállásának legfeljebb ¼ - ⅓- a adódik;
- javasolt páradiffúzió szempontjából nyitott rétegrendet kialakítani. Páradiffúzió szempontjából nyitott a rétegrend, ha az egymásra kerülő rétegek páradiffúziós ellenállása a belső térből kifelé haladva csökkenő. Ezt biztosíthatja:
 - alacsony páradiffúziós képességű vagy legfeljebb párafékező csapadékvíz elleni szigetelés;
 - páraszellőzők alkalmazása.

A páraszellőzés módjának és mértékének meghatározása tervezői feladat.

Amennyiben a fenti intézkedések nem készíthetők, páratechnikai méretezés vagy dinamikus szimuláció szükséges. A páradiffúziós ellenőrzés során figyelmebe kell venni a meglévő rétegeket hő- és páratechnikai szempontból a szakirodalom anyagtulajdonságai vagy – azonosítható termékek esetén – a műszaki dokumentációjuk alapján.

A meglévő-megmaradó párazáró, párafékező tulajdonságú rétegek perforációval (lásd 5.4.1. fejezet) abban az esetben tehetők páradiffúzió szempontjából nyitottá, ha alattuk a páramomás kiegyenlítődés megoldott, a pára a felület bármely pontjáról eljuthat a perforációig. Perforáció kialakítása csak enyhén átnedvesedett (lásd 5.4.1. fejezet) anyagok esetén javasolt. Amennyiben tervezői döntés eredményeképpen nedves-vizes anyagok megtartásra kerülnek, azok perforálása nem javasolt.

Perforáció esetén a csapadékvíz elleni szigetelés alatt javasolt gőznyomáskiegyenlítő réteg kialakítása, amely történhet:
- külön filc alátétréteggel,
- filcásírozott csapadékvíz elleni szigeteléssel,
- gőznyomáskiegyenlítő réteggel,
- speciális gőznyomáskiegyenlítő kialakítású (párazatsoránás) csapadékvíz elleni szigeteléssel.
Az önálló vagy a lemez alsó felületére üzemben felhordott filc réteg alkalmas a kisebb aljzatmozgásokból adódó feszültségek felvételére is.

Szálas anyagú hőszigetelések gőznyomáskiegyenlítésre nem vehetők figyelembe, mivel nedvesség hatására felpuhulnak, térfogatuk és nyomóáramlásuk módosulhat.

Mindennel esetben vizsgálni kell a belső tér rendeltetetését páraterhelés szempontjából. Hiányzó vagy hibás páratechnikai réteg, elemes födém (pl. előregyártott vasbeton gerendás födém, paneles födém) és/vagy magasabb páraterhelés esetén páratechnikai méretezés vagy dinamikus szimuláció szükséges.

5.4.3. Hőtechnika

Fűtött tereket határoló szerkezeteket hőszigeteléssel kell ellátni (lásd 4.2.2.1. fejezet). Állagvédelmi célú beavatkozásnál, ha az érintett szerkezethez csatlakozó terek rendeltetése változatlan, legalább az eredeti szerkezet hőtechnikai minőségével megegyező rétegrendet kell készíteni. Energetikai célú vagy komplex felújítás során a rétegrendet az érvényes előírásoknak (lásd 4.2.2.1. fejezet) vagy annál magasabb energetikai követelményeknek megfelelően kell kialakítani.

A hőszigetelés méretezésénél figyelembbe kell venni a meglévő-megmaradó rétegek, valamint az új rétegrend sajátosságait (lásd 5.3.2., 5.3.3., 6.2. fejezet).

Törekeni kell a hőhídcsökkentett/hőhídmentes kialakításra. Amennyiben ez nem biztosítható, az adott résztre állagvédelmi ellenőrzés, hőhídszimuláció készítése szükséges. Adott esetben kiegészítő intézkedéssel (pl. felületfűtés) vagy a szerkezet átalakításával kell az állagvédelmet biztosítani.

5.5. Anyagösszeférhetőségek

A felújítás során alkalmazott anyagok, valamint azok kombinációja egymás között és a meglévő-megmaradó rétegekkel tartósan összeférhetők legyenek (vegyi összeférhetőség, tapadás időbeni változása, állékonyság stb.).

A csapadékvíz elleni szigetelést kiegészítő bádogos szerkezetek kizárólag a gyártói alkalmazástechnikai ajánlásoknak, illetve az ÉMSZ Tetőszigetelések tervezési és kivitelezési irányelveinek és a Bitumenes lemezekből valamint a Műanyag és gumialapú lemezekből készülő csapadékvíz elleni szigetelések tervezési és kivitelezési szabályainak megfelelő fém anyagból készülheti. Bádogos szerkezetek esetén az elektrokémiai korroziót a meglévő és az új szerkezetek között el kell kerülni.

5.6. Szigetelés aljzata, lejtéskorrekció, vízelvezetés

Az új rétegek aljzata feleljen meg az ÉMSZ Tetőszigetelések tervezési és kivitelezés irányelveiben megfogalmazott követelményeknek. A leterhelő és vagy mechanikai védőréteget, a gyöngykalvics UV-sugárzás elleni réteget, valamint a szennyeződéseket el kell távolítani. A meglévő-megmaradó csapadékvíz elleni szigetelés nagymértű léghőlyagait, gyűrűdéseit fel kell vágni, szükség esetén perforálni (lásd 5.4.1. fejezet) kell.

A tető lejtésének meghatározásánál a teherhordó szerkezetnek az önsúly, esetleges teher és hőteher hatására a használat során kialakuló valós állapotát, lehajlását kell figyelembe venni. Ez alapján kerülhet sor a tetőszigetelés konkrét lejtésvizsgaik megfelelő és a tetőősszefolyók helyének függvényében. Biztosíti, hogy a tetőn a víz lefolyásának akadály- és kerülőmentességét. Ha a tetőfelület lejtése nem megfelelő lejtéskorrekció vagy új lejtés kialakítása szükséges.
A lejtéskorrektúrt vagy új lejtést minden esetben tervezni kell az anyagok összeférhetősége (lásd 5.5. fejezet), együtt dolgozása figyelembevételével.

A lejtéskorrektúrhoz nem alkalmazhatók nedvszívó, a nedvességet megtartó és nem térfogatállandó anyagok. A lejtéskorrektúrt, új lejtéképzést figyelembe kell venni a páradiffúzió elemzésénél (lásd 5.4.2. fejezet).

A kisebb lejtéshibákat műanyag adalékú cementhabarccsal vagy bitumenes lejtéskiegyenlítő réteggel kell kijavítani.

Lejtéképzés készülhet:
- műanyag adalékú cementhabarccsal vagy bitumenes lejtéskiegyenlítő réteggel,
- ékbe vágott hőszigetelésből,
- kavicsbetonból, esztrichből vagy könnyűbetonból.

Nehéz lejtéskorrektúra (kavicsbeton, esztrich) esetén a teherhordó szerkezet teherbírását ellenőrizni kell.

A beton és vasbeton aljzatszerkezeteket tágulási hézaggal kell ellátni (2. táblázat). Aljzatoknál a tágulási hézag kiosztása lehetőleg négyzetes legyen. A lejtést adó és/vagy aljzatbeton réteget a felépítmények, csatlakozó szerkezetek mentén tágulási hézaggal kell kialakítani.

Amennyiben az aljzatszerkezet nem látható el tágulási hézagokkal, akkor ezt a tetőszigetelés kialakításánál figyelembe kell venni.

<table>
<thead>
<tr>
<th>TÁGULÁSI HÉZAGOK KÖZTI TÁVOLSÁG (LEGFELEBB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>m</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>vasbeton ereszek, előtétők</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>mellvédek, attikák</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>lejtbenet hőszigetelés alatt</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>hőszigetetlen lejtbenet, aljzatbeton</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

2. táblázat: Tágulási hézagok javasolt távolsága (ÉMI Tervezési segédlet alapján)

Ragasztott rögzítés esetén az aljzatfelületet a szigetelési rendszernek megfelelő kellősítéssel kell ellátni.

A vízelvezetés biztosítása érdekében adott esetben a víznyelő áthelyezése és/vagy a vízelvezetés rendszerének módosítása lehet szükséges.

Ha lejtéskorrektúra, víznyelő áthelyezése nem készülhet, akkor a tetőszigetelés különleges szerkezetnek minősül és ennek megfelelően magasabb minőségű csapadékvízz elleni szigetelés készítése szükséges (lásd 4.2.4. fejezet).
5.7. Rögzíthetőség vizsgálata

A rögzítéseket a szélzsivás elleni védelem szempontjából méretezni kell (lásd 4.2.3. fejezet).

Tetőszigetelések felújítása során az új tetőszigetelésekhez képest további megfontolások is szükségesek.

5.7.1. Leterheléses rögzítés

Leterheléses rögzítés vagy részleges leterheléses rögzítés (pl. kiegészítő mechanikai védelem) esetén a teherhordó szerkezet teherbírásának ellenőrzése szükséges.

5.7.2. Ragasztott rögzítés

Ragasztással (teljes felületű lángolvasztott, teljes felületű vagy részleges hidegragasztás) tervezett rögzítés esetén ellenőrizni kell, hogy a meglévő-megmaradó rétegek rögzítése (ragasztott vagy mechanikai) megfelel-e a szélzsivás elleni rögzítésnek. Az ellenőrzés tapadósilárdság-vizsgálattal végezhető. Bevonat-, öntapadó és ragasztott szigetelések esetén a tapadósilárdság legalább 0,5 N/mm² legyen.

Az új rétegek ragasztott rögzítése, különösen a csapadékvíz elleni szigeteléssel ragasztásos rögzítése esetén a tetőrétegek között esetlegesen kialakuló gőznyomás kiegyenlítésére külön gondot kell fordítani (lásd 5.4.2. fejezet). Papírbetétes bitumenes lemezekkel készített csapadékvíz elleni szigetelések míg az alatta lévő rétegek gondos kivitelezése esetén is felhőhagynak, ezért ilyenkor az új csapadékvíz szigetelőréteg ragasztott rögzítése előtt gőznyomáskegyenlítő réteget kell fektetni mechanikai rögzítéssel vagy részleges ragasztással.

Olyan tetőknél, ahol hőhagynak, aljzattól való elválás tapasztalható, ott az új csapadékvíz szigetelőréteg felraszthatása előtt gőznyomást kiegyenlítő réteget kell (lásd 5.4.2. fejezet) és/vagy elválasztó réteget kell fektetni.

A részleges hideg ragasztásos rögzítések (pl. PUR ragasztó, filces lemezek ragasztása) a leginkább érzékenyek az aljzat felületi egyenletességére, mivel gátolt tapadás esetén a réteg szélzsivás elleni rögzítése nem jön létre. Ezen rétegek esetén különös figyelmet kell fordítani az aljzat simaságára, így javasolt új simított felület kialakítása.

5.7.3. Mechanikai rögzítés

Mechanikai rögzítés esetén vizsgálni kell:

- feltöltéses rétegfelépítés esetén a födém kialakítását (pl. felülbordás födém), a feltöltés bonthatóságát;
- milyen aljzat áll rendelkezésre (monolit vasbeton födém, trapézlemez, feltöltésen kőszivacslap stb.);
- a rendelkezésre álló aljzat megfelelő kihúzási ellenállással rendelkezik-e?; Mechanikai rögzítés készítése előtt az aljzaton a rögzítőelem kihúzási próbáját el kell végezni;
- milyen hosszúságú rögzítőelemek alkalmazása szükséges.

5.8. Csapadékvíz elleni szigetelés

A felújítás során alkalmazható csapadékvíz elleni szigetelés anyagát, technológiáját meghatározza:

- rögzíthetőség (lásd 5.7. fejezet);
- anyagösszeférhetőség
ha a meglévő szigetelő jellegű rétegek (páratechnikai rétegek, csapadékvíz elleni szigetelés) és az új
csapadékvíz elleni szigetelés közé új rétegek (pl. lejtést adó réteg, hőszigetelés) kerülnek, akkor az új
tetőszigetelésekkel megegyező elvek alapján választható az új vízszigetelés anyaga, technológiája:

> műanyag lemezek,
> gumialapú lemezek,
> bitumenes lemezek,
> bevonatszigetelések (modifikált bitumenmassza, műanyag alap):

Elő sorban bonyolult felületek esetén. Az aljzatot vizsgálni kell repedésérzékenységére, az előírás-
szerű tágulási hézagokat ki kell alakítani, valamint ennek függvényében kell meghatározni a repedés-
érzékenységét. Szükséges tapadószilárdság meglétét ellenőrizni kell. Elsősorban szilárd aljzat,
esetleg teljes felületen ragasztott megmaradó szigetelések esetén javasolt felhordásuk.

ha a meglévő szigetelő jellegű rétegekre (páratechnikai rétegek, csapadékvíz elleni szigetelés) készül
az új csapadékvíz elleni szigetelés, akkor

> célszerű az új csapadékvíz elleni szigetelést vagy kiegészítő rétegét a meglévő-megmaradó
vízszigetelés anyagával azonos vagy azzal rokon módon készíteni;
> eltérő típusú modifikációval rendelkező bitumenes vastaglemezek vagy modifikált és oxidbitumenes
lemezek egymáshoz való anyagfolytonos csatlakoztatását a lemezek anyagszerkezetének védelme
érdekében kerülni kell. Szükség esetén az anyagok összeférhetőségét vizsgálni kell és/vagy ki kell
kérni az adott gyártó állásfoglalását;

meglévő bitumenes lemez csapadékvíz elleni szigetelésre közvetlenül PVC lemez szigetelés csak
elválasztó réteggel készülhet. Ez lehet:

1. gyári kasírozás,
2. legalább 300 g/m² felülettömegű nem szőtt polipropilén filc,
3. 200-300 g/m² felülettömegű nem szőtt poliészter filc,
4. 70-130 g/m² felülettömegű, termikusan kötött polipropilén, nem szőtt műanyag fátyol,
5. 100-120 g/m² felülettömegű üvegfátyol.

általános felületen leterhelés, nehéz felületvédelem nélkül, valamint a részletképzésekknél mechanikai
védelem hiányában kizárólag UV-sugárzás álló szigetelőlemez alkalmazható;

a kivitelezés tervezett időpontja (csapadék, hőmérséklet stb. miatt).
6. FELÚJÍTÁSI SAJÁTOSSÁGOK

6.1. Hőszigeteletlen tető

Hőszigeteletlen tető szerkezet nyitott/fedett, fűtetlen és/vagy nem huzamos emberi tartózkodás céljára szolgáló terek felett alakítható ki.

Hőszigeteletlen tetőszerkezet felújítási változatai lehetnek többek között (4. ábra):

- csapadékvíz elleni szigetelés felújítása (lásd 5.3.1., 5.8. fejezet)

Alkalmazható, ha

- megfelelő a lejtésképzés, legfeljebb helyi, pontszerű felületkiegyenlítés szükséges (lásd 5.6. fejezet);
- a meglévő-megmaradó rétegek legfeljebb enyhén átnedvesedettek és ezek kiszárítása biztosítható (lásd 5.4.1. fejezet).

Az új csapadékvíz elleni szigetelés szélszívás elleni rögzítése lehetséges:

- ragasztott rögzítéssel (lásd 5.7.2. fejezet)
 - például meglévő-megmaradó bitumenes lemezzsigetelés esetén új bitumenes vastaglemez réteg (pl. egy polimerbitumenes zárólemez réteg) vagy rétegek teljes felületű lángolvasztásos ragasztásával,
 - öntapadó lemezek alkalmazásával,
 - részleges ragasztással.
mechanikai rögzítéssel (lásd 5.7.3. fejezet), ha

drendelkezésre áll olyan réteg, amely megfelelő kihúzóerővel rendelkezik,

> gőznyomáskiegyenlítés (lásd 5.4.2. fejezet), elválasztás szükséges.

> leterheléssel (lásd 5.7.1. fejezet), tetőperemek magasságának ellenőrzése szükséges.

- **csapadékvíz elleni szigetelés felújítása kiegészítő védőréteggel**
 A csapadékvíz elleni szigetelés felújításához képest értéknövelő felújítás, mivel a kis vastagságú hőszigetelés alkalmazása a födém és a csapadékvíz elleni szigetelés hőterhelését csökkenti. A kiegészítő hőszigetelést a fordított rétegrendű tetőszírozáshoz hasonlóan kell használni és leterheléssel ellátni. A tetőperemek magasságának ellenőrzése szükséges.

- **komplex felújítás részleges bontással (lásd 5.3.3. fejezet)**
 Ha a csapadékvíz elleni szigetelés bontása szükséges, de az alatta lévő meglévő rétegek – a csapadékvíz elleni szigetelés felújításához hasonlóan – megtartható. Kialakítása során a csapadékvíz elleni szigeteléseknél leírtakat kell betartani. Az új csapadékvíz elleni szigetelést ebben az esetben is javasolt ellátni védőréteggel.

- **teljes bontás, új rétegfelépítés (lásd 5.3.4. fejezet)**
 Az új tetősigetelés rétegfelépítését, azon belül a lejtésképzést (kis teherbírású tetőszírozás esetén ékbevágott hőszigetelés, könnyűbeton stb.) alapvetően határozza meg a terhelhetőség és rögzíthetőség. Megfelelő aljzat esetén bevonatszigetelés is felhordható.

Feltöltések rétegfelépítés esetén a födémcsírozás vizsgálata elengedhetetlen, mivel felülbordás monolit vasbeton vagy előregyártott gerendás födémem esetén a feltöltést pótolni kell.

6.2. Egyhéjú lapostető

6.2.1. Egyenes rétegrend

5. ábra: Egyenes rétegrendű tetősigetelés jellemző, elvi felújítási lehetőségei
Meglévő egyenes rétegrendű tetőszerkezet felújítási változatai lehetnek többek között (5. ábra):

- **csapadékvíz elleni szigetelés felújítása** (lásd 5.3.1., 5.8. fejezet)

 Alkalmazható, ha

 - megfelelő a lejtésképzés, legfeljebb helyi, pontszerű felületkiegyenlítés szükséges (lásd 5.6. fejezet);
 - a meglévő-megmaradó rétegek teljesítőképessége megfelelő, a vízszigetelés alatti rétegek teherbírók és alaktartók;
 - a meglévő-megmaradó rétegek legfeljebb enyhén átnedvesedettek és ezek kiszártása biztosítható (lásd 5.4.1. fejezet).

Az új csapadékvíz elleni szigetelés szélsővízálló elleni rögzítése a hőszigeletetlen tetőnél leírtakhoz hasonlóan történhet (lásd 6.1. fejezet).

- **energetikai korszerűsítés** (lásd 5.3.2. fejezet)

 Kizárólag abban az esetben alkalmazható, ha a tetőszigetelés valamennyi rétege megfelelő állapotú. Duó-tetőként, leterheléses rögzítéssel alakítható ki.

- **komplex felújítás részleges bontással** (lásd 5.3.3. fejezet)

 Kialakítható:

 - egyenes rétegrendű tetőként, ha

 - a meglévő-megmaradó rétegek megfelelő állapotúak, megfelelő a lejtésképzés (lásd 5.6. fejezet). Páratechnikai réteg hiányában vagy nem megfelelő kialakítása esetén a megmaradó csapadékvíz elleni szigetelést páratechnikai rétegként figyelembe kell venni és a rétegekre kerülő hőszigetelést ennek figyelembevételével kell megtervezni (lásd 5.4.2. fejezet). A csapadékvíz elleni szigetelés anyaga és rögzítése az épület adottságai függvényében az új tetőkhöz hasonlóan tervezhető;

 - a csapadékvíz elleni szigetelés bontása szükséges, a meglévő hőszigetelés legfeljebb részlegesen bontandó és a megmaradó rétegek legfeljebb enyhén átnedvesedettek és ezek kiszártása biztosítható (lásd 5.4.1. fejezet). Páratechnikai réteg működőképességének ellenőrzése szükséges. A megmaradó rétegekre készülhet az új hőszigetelés akár lejtéskorrekciónál. A csapadékvíz elleni szigetelés anyaga és rögzítése az épület adottságai függvényében az új tetőkhöz hasonlóan tervezhető;

 - a fentihez hasonló feltételekkel, de a meglévő csapadékvíz elleni szigetelés perforálásával.

- duó-tetőként.

A meglévő rétegek részleges megtartásával (lásd 5.4.1. és 5.4.2. fejezet). A tetőszigetelés rögzítése leterheléses, így a födém teherbírásának ellenőrzése szükséges.

A komplex felújítás lehetőséget ad lejtéskorrekciónál, amely során leginkább ékbevágott hőszigetelés alkalmazása javasolt.
teljes bontás, új rétegfelépítés

Az új tetőszigetelés rétegfelépítését a terhelhetőség és rögzíthetőség határozza meg. Leggyakoribb a rendeltetés függvényében az egyenes vagy duó rétegfelépítés kialakítása.

Komplex felújítás és új rétegfelépítés kialakítása esetén:

- feltöltéses rétegfelépítésnél a födémszerkezet kialakítását a hőszigeteletlen tetőkhöz hasonlóan vizsgálni kell (lásd 6.1. fejezet);
- könnyűszerkezetes födém felújítása során a teljes rétegfelépítést teherövekmény szempontjából ellenőrizni kell, mivel a szerkezet a tűzvédelmi előírások szempontjából kritikus lehet (lásd TvMI 11.2:2020.01.22.).

6.2.2. Duó-tető

6. ábra: Duó rétegfelépítésű tetőszigetelés jellemző, elvi felújítási lehetőségei

Meglévő duó-tető felújítási változatai lehetnek többek között (6. ábra):

- csapadékvíz elleni szigetelés felújítása (lásd 5.3.1., 5.8. fejezet)

A csapadékvíz elleni szigetelés felújítása kizárólag a leterhelőréteg és a szigetelés felett található hőszigetelés elbontásával lehetséges. Amennyiben a rétegek megfelelőek a csapadékvíz elleni szigetelés elkészülte után visszahelyezhetők.

Alkalmazható, ha

- megfelelő a lejtésképzés, legfeljebb helyi, pontszerű felületkiegyenlítés szükséges (lásd 5.6. fejezet);
- a meglévő-megmaradó rétegek teljesítőképessége megfelelő, a vízszigetelés alatti rétegek teherbírók és alaktartók;
a meglévő-megmaradó rétegek legfeljebb enyhén átnedvesedettek és ezek kiszárítása biztosítható (lásd 5.4.1. fejezet).

energetikai korszerűsítés (lásd 5.3.2. fejezet)

Kizárólag abban az esetben alkalmazható, ha a tetőszigetelés valamennyi rétege megfelelő állapotú.

Energetikai korszerűsítés kizárólag a leterhelőréteg elbontásával lehetséges, amely a meglévő kiegészítő hőszigetelésnél nagyobb vastagságú hőszigetelés beépítése után visszahelyezhető. Duó-tető esetén javasolt a csapadékvíz elleni szigetelés felett a kétvágányú hőszigetelés (lásd 6.2.3. fejezet) kerülése.

komplex felújítás részleges bontással (lásd 5.3.3. fejezet)

Kialakítható:

- duó-tetőként

 A meglévő rétegek részleges megtartásával (lásd 5.4.1. és 5.4.2. fejezet). Az elbontott leterhelőréteg visszahelyezhető.

- egyenes rétegrendű tetőként az egyenes rétegrendhez hasonlóan (lásd 6.2.1. fejezet). A tetőszigetelés rögzítéséhez az elbontott leterhelőréteg visszahelyezhető.

A komplex felújítás lehetőséget ad lejtéskorrekciónra, amely során leginkább ékbevágott hőszigetelés alkalmazása javasolt.

teljes bontás, új rétegfelépítés

Amennyiben a tetőfödemet az eredeti rétegfelépítés nem terhelte túl, a rendeltetés függvényében választó az új rétegfelépítés kialakítása, rögzítése.

6.2.3. Fordított tető

- **MEGLÉVŐ RÉTEGFELELÉPÍTÉS**
 - Csapadékvíz elleni szigetelés felújítása
 - Energetikai felújítás
 - Csapadékvíz elleni szigetelés felújítása és energetikai felújítás egyéb hőszigeteléssel

- **FELÚJÍTÁS MÓDJA**
 - Felújítás duó-tetőként
 - Felújítás egyenes rétegrendű tetőként

7. ábra: Fordított rétegfelépítésű tetőszigetelés jellemző, elvi felújítási lehetőségei
Meglévő fordított rétegrendű tető felújítási változatai lehetnek többek között (7. ábra):

- **csapadékvíz elleni szigetelés felújítása** (lásd 5.3.1., 5.8. fejezet)

A csapadékvíz elleni szigetelés felújítása kizárólag a leterhelőréteg és a hőszigetelés elbontásával lehetséges. Amennyiben a rétegek megfelelők a csapadékvíz elleni szigetelés elkészülte után visszahelyezhetők.

Meglévő fordított rétegrendű felépítés felújítása kizárólag abban az esetben korlátozódhat, hogy a csapadékvíz elleni szigetelés felújítására, ha

- a fődémszerkezet felületsúlya legalább 2,5 kN/m²;
- a fődémszerkezet hővezetési ellenállása legalább R ≥ 0,15 m²K/W;
- könnyűszerkezetes, kis vastagságú előregyártott vasbeton szerkezetű fődém esetén a csapadékvíz elleni szigetelés felújítása csak komplex felújításként vagy a teljes rétegrend bontásával készíthető el.

- **energetikai korszerűsítés** (lásd 5.3.2. fejezet)

Meglévő fordított rétegrendű felépítés kizárólag energetikai célú felújítása akkor készülhet, ha a fődémszerkezetre vonatkozó követelmények teljesülnek. Energetikai korszerűsítés kizárólag a leterhelőréteg elbontásával lehetséges, amely a hőszigetelés beépítése után visszahelyezhető.

A hőszigetelési képesség növelhető:

- nagyobb vastagságú egyrétegű hőszigetelő táblák alkalmazásával;
- kiegészítő réteg vagy két réteg hőszigetelés elhelyezésével.

Ebben az esetben az alkalmazástechnikai utasításoknak megfelelően a hőszigetelés felett nem szűrőréteget, hanem a poliztirollal összetartó, páradiffúzió szempontjából nyitott (diffúziós-egyenértékű légréteg-vastagsági s_d < 0,02 m), fokozott vízlevezető képességű szűrőfátyol védőréteget kell helyezni annak érdekében, hogy a két réteg hőszigetelés között vízfolyam ne alakulhasson ki. Az alsó réteg vastagsága nem lehet kisebb a felső réteg vastagságánál.

- **komplex felújítás** (lásd 5.3.3. fejezet)

Fordított rétegfelépítésénél a részleges bontás csak úgy alakítható ki, ha a csapadékvíz elleni szigetelés megfelelő állapotú és páratechnikai rétegként figyelembe vehető. Műanyag lemezszigetelések esetén a hőszigetelés és vízszigetelés közötti anyagösszeférhetőséget vizsgálni kell.

A felújításhoz a leterhelőréteg bontása szükséges, az új tetőszigetelés rögzítése érdekében visszahelyezhető. Kialakítható:

- duó-tetőként
 - Amennyiben a meglévő hőszigetelés megfelelő, annak megtartásával vagy új hőszigetelés elhelyezésével.
- egyenes rétegrendű tetőként az egyenes rétegrendhez hasonlóan (lásd 6.2.1. fejezet).

A komplex felújítás lehetőséget ad lejtéskorrekciónra, amely során leginkább ékbevágott hőszigetelés alkalmazása javasolt.
6.3. Kéthéjú lapostető

8. ábra: Kéthéjú hidegterítő jellemző, elvi felújítási lehetőségei

Meglévő kéthéjú lapostető felújítási változatai lehetnek többek között (8. ábra):

- **csapadékvíz elleni szigetelés felújítása** (lásd 5.3.1., 5.8. fejezet)

 A csapadékvíz elleni szigetelés felújítása a hőszigeteltetlen tetőhöz hasonlóan történhet, de a vízszigetelés szélsőszélsősége is pontosan a tetőhéjhoz közeli részei növelhetők.

 A felújítás során a felső héj alatti hőszigetelést is felügyelettel kell biztosítani.

- **energetikai korszerűsítés** (lásd 5.3.2. fejezet)

 Kéthéjú lapostető energetikai felújítása kizárólag a felső héjra készített hőszigeteléssel nem javasolt.

 Kizárólag energetikai felújítás a csapadékvíz elleni szigetelés legalább részleges bontása nélkül nem lehetséges, mivel az új tetőszigetelésben kitöltött üregek nem maradhatnak.

 Az új tetőszigetelés típusa is komplex felújítás (lásd 5.3.3. fejezet)

- **a felső héj alatti hőszigetelés készítése**

 A felső héj alatti hőszigetelés készítése esetén a héj alatti hézagot teljes keresztmetszetén ki kell tölteni. Leginkább fújt hőszigetelések alkalmazhatók a legkisebb roncsolással. Ezáltal egyenes réteggrendet tetőterülethez akatható ki;
leginkább vasbeton elemekből készített felső héj esetén a feltámaszkodási pontok hőhid hatását a felső héjon készített kiegészítő hőszigeteléssel lehet csökkenteni, amely kialakítható a héj terhelhetősége esetén kialakítható duó rétegrendként;

kéthéjú tetőkben páratechnikai réteg jellemzően nem készült, így a felújítás során páratechnikai ellenőrzés szükséges (lásd 5.4.2. fejezet). Az átszellőztetés megszüntetése miatt a felső héj alatt a pára feltorlódhat, kicsapódhat és beázsos tüneteket eredményezhet. Ennek megakadályozása érdekében a felső héj perforálása és felette gönyomáskiegyenlítő réteg beépítése válhat szükségessé;

a felső héj feltámaszkodási pontjainál és a rétegrend fal- és attika csatlakozásainál a csomópontok állagvédelmi ellenőrzését különösen gondossággal kell végezni.

teljes bontás, új rétegfelépítés

Jelentős beavatkozással jár a teljes rétegfelépítés bontása, de így az új tetőknek megfelelő rétegfelépítés alakítható ki kompromisszumok nélkül.

6.4. Részletek, kiegészítő intézkedések

Részletképzéseknél is fontos a bontási munkák optimalizálása. Bádogos szerkezetre, felületre új szigetelést készíteni nem szabad.

Új leterheléses rögzítés, energetikai felújítás, valamint komplex felújítás esetén minden esetben vizsgálni kell a csatlakozó szerkezetek geometriai kialakítását, a felvezetések kialakítását, amely visszahathat a rétegfelépítésre, az alkalmazott hőszigetelőanyagokra stb. Adott esetén kiegészítő intézkedéseket (pl. szerkezet megemelése) szükségesek.

Energetikai és komplex felújítás esetén a részletek kialakítása során a hőhídcsökkentést biztostani kell (lásd 5.4.3. fejezet).

A részletképzéseket az új szigetelésekkel azonos módon kell kialakítani az ÉMSZ Tetőszigetelések tervezési és kivitelezési irányelveinek és a Bitumenes lemezekből valamint a Műanyag és gumialapú lemezekből készülő csapadékvíz elleni szigeteléseket tervezési és kivitelezési szabályainak megfelelően.

Ökológiai védőréteg esetén javasolt a tetőszerkezeten vízvételi pont kiépítése.

A felújítások során – amennyiben ez korábban nem volt – javasolt a tetőfelületek biztonságos, szerkezetek megsértése nélküli, karbantartás célú megközelítését kialakítani.

6.4.1. Lábazatok, falszegélyek

A lábazaton a szigetelésfelvezetés magassága legalább 20-30 cm legyen. A szigetelést lecsúsztás ellen mechanikailag rögzíteni kell.

Egyenes rétegrendű lábazatképzés esetén a csapadékvíz elleni szigetelést a felvezetési magasság felett le kell zárni a hátszerkezethez.
6.4.2. Attikák, tetőszegélyek

Attikára felvezetett csapadékvíz elleni szigeteléseknél az attikaszegély alatt szélzáró duzzadó tömítőszalaggal meg kell akadályozni, hogy a szél torlónyomása a csapadékvíz elleni szigetelés alá juthasson.

Attikák kialakításánál figyelembe kell venni:

- attikafedés vízzárósága
 - magas attika, mérsékelt vízzáró és fokozottan vízzáró fedés (pl. tömített, korcolt fémlemez burkolat) esetén kiegészítő intézkedés nem szükséges;
 - magas attika, nyílthézagos attikafedés (pl. kő, műkő burkolat – még tömített hézagképzés esetén is) esetén kiegészítő intézkedés szükséges, amely lehet a lábazatszigetelés felvezetése vagy külön vízzáróságot biztosító alátétszigetelés készítése.

- alacsony attika esetén a szigetelés felvezetése felett külön attikafedés kialakítása nem javasolt;

- attikafedés esetén az attikafedés rögzítése a szigetelés átszúrása nélkül történjen;

- az attikaszegély átszúrásával történő attikafedés csak mérsékeltten vagy fokozottan vízzáró fedés esetén lehetséges különleges kiegészítő intézkedések mellett.

Alacsony tetőperemek kialakításánál az ÉMSZ Tetőszigetelések tervezési és kivitelezési irányelveinek és a Bitumenes lemezekből valamint a Műanyag és gumialapú lemezekből készülő csapadékvíz elleni szigetelések tervezési és kivitelezési szabályait kell figyelembe venni.

6.4.3. Nyílászárók

Tetőkjáratok, nyílászárók alsó síkját a lábazatok, falszegélyek felvezetési magasságához kell igazítani.

Meglévő ajtók alacsonyabb küszöbe, nyílások alacsony párkánymagassága esetén:

- átalakítás javasolt;

- ha átalakítás nem lehetséges kiegészítő intézkedés szükséges, amely lehet ráccsal fedett teraszfolyóka elhelyezése, védőtető stb.

A tokszerkezetre a szigetelést a lábazatszigetelés magasságáig fel kell vezetni és csatlakoztatni.

A nyílászárók síkja meghatározza a hőhídcsökkentés lehetőségét.

6.4.4. Mozgási hézag

A függőleges és a vízszintes teherhordó, valamint az egymáshoz csatlakozó szerkezetek mozgásait (hőmozgás, gátolt alakváltozás, sülyvedéskülönbség stb.), azok mértékét a tetőszigetelés megválasztásánál, a részletek kialakításánál figyelembe kell venni.

A szerkezeti dilatációt a teljes szerkezeten át kell vezetni. A dilatációs hézagog egyenes vonalban, a szerkezet elmozdulását nem gátlóan kell kialakítani. A dilatációba kizárólag erre a célra betervezett hézagkitöltés kerülhet. A dilatációtól a tetőösszefolyók, felépítmények legkisebb távolsága 50 cm legyen.
A fémlemez lirával kialakított, nagy hosszúságú mozgási hétsegok élettartama a forrasztott toldások, a nagy hőmozgások miatt korlátozott, ezért cseréjük javasolt a szigetelési rendszerhez illeszkedő korszerű dilatációs elemekek alkalmazásával.

6.4.5. Vízelvezetés

A csapadékvíz elleni szigetelés felújítása esetén minden esetben javasolt a vízelvezető elemek (víznyelő, tűlfolyó) ellenőrzése/kerületje, fűtött kialakítása még melegítető esetén is.

Ha a tetőszerkezet vízelvezetése nem megfelelő, akkor a víznyelők elhelyezésénél az alábbiakat figyelembe kell venni:

- a tetőfelületen a csapadékvíz akadálytalan elvezetését biztosítani kell;
- a tetőösszefolyó helyének kiválasztásánál a teherhordó szerkezet alakváltozásait figyelembe kell venni. A víznyelő mélypontra kerüljön, a felületbe legalább 2 cm-t be kell süllyeszteni.;
- a csatlakozó szerkezetektől (tetőfelépítmény, attika, dilatáció stb.) az előírt távolságokat (célszerűen > 50 cm) be kell tartani.

Fordított rétegrendű tetőszerkezet esetén is biztosítani kell a vízelvezetést a szigetelés síkján, ilyen energetikai és komplex felújításnál a víznyelők/tűlfolyók környezetében a födémnél kiegészítő hőszigetelés kialakításáról gondoskodni kell a hőhidasság csökkentése érdekében. Vízköpő esetén a fali átvezetés is hőhídcsökkentett legyen.

Külső vízelvezetés és különösen energetikai, komplex felújítás esetén biztosítani kell:

- az ereszszegély rögzítését;
- az ereszcsatorna rögzítését, stabil alátámasztását.

6.4.6. Csőátvezetések, áttörések

A födémmáttörések számát minimalizálni kell. Törekedni kell a csőátvezetések függőleges felületen, lehetőség szerint hőhatár feletti kialakítására. A födémmáttörések javasolt csoportosítva kialakítani. Újonnan kialakított áttörések, csőátvezetések, tetőösszefolyók és egyéb, a szigetelést áttörő szerkezetek egymástól, a felmenő szerkezetektől mért távolsága legalább 50 cm legyen. Amennyiben ez nem biztosítható, akkor célszerű összefogni ezeket és úgy szegélyezni.

A csapadékvíz elleni szigetelésen gépészeti csövek, elektromos kábelek csak védőcsövesen vezethetők át. A védőcsőhöz a szigetelést gallérozzással vagy előregyártott idomelemekekkel kell csatlakoztatni oly módon, hogy a felvezetést elérje a hőhatárt. A csatlakozást vízhatlan módon tömören és takarni szükséges.

6.4.7. Egyéb szerkezetek

A tetőre kerülő kiegészítő elemeket (napelemek, járólap bakok, leesés elleni védelem stb.) lehetőség szerint a szigetelés átszúrása nélkül kell rögzíteni.

Amennyiben a meglévő gépészeti berendezések nem bonthatók, egyedi megoldás kialakítása szükséges.
A lapostetők rendszeres karbantartást igénylő szerkezetek, így nem hasznositott tetők esetében is a tetőn emberi jelenlét mellett számolni kell, így javasolt járófelület kijelölése, védőréteg kialakítása.

Felújítás során javasolt leesés elleni védelem kiépítése, amely erre minősített, a vonatkozó jogszabályoknak megfelelő rendszer legyen. Különösen gondossággal kell eljárni, ha a tetőre gyakori karbantartást igénylő gépészeti elemek kerülnek (napelem, gépészeti kültéri egységek stb.).

Felújítási munkák közben is gondoskodni kell az ideiglenes villámvédelemről. A villámvédelmet a hatályos jogszabályoknak megfelelően helyre kell állítani.

A tetőn lévő villámvédalmai rendszer jogszabályban meghatározott időközönként szükséges felülvizsgáltatni. Ha a felújítás során nem történt olyan beavatkozás, amely a rendszer átalakítását indokolná, de ideiglenes eltávolítása az építési munka elvégzéséhez szükséges, ennek feltételeit a vonatkozó jogszabályok alapján vizsgálni kell. Amennyiben a felújítás a villámvédelmi rendszer módosítását igénylő, a beavatkozás mértékének megfelelő jogosultsággal rendelkező villámvédelmi szaktervező bevonása szükséges.

A felújított csapadékvíz elleni szigetelések készítésekor a szigetelés alatt elhelyezett gyengeáramú nedvességérzékelő rendszer megkönnyíti a későbbi, esetleges meghibásodások helyének meghatározását, amely főként nagy felületű tetőkön a későbbi javítást gazdaságosabbá teheti.

7. **KIVITELEZÉSI ALAPELVEK**

A tetőszigetelések felújítása során az ÉMSZ Tetőszigetelések tervezési és kivitelezési irányelveinek és a Bitumenes lemezekből valamint a Műanyag és gumialapú lemezekből készült csapadékvíz elleni szigetelések tervezési és kivitelezési szabályait, valamint a beépítésre kerülő anyagok gyártói előírásait figyelembe kell venni.

A kivitelezés megkezdése előtt tisztázni kell:

- telek/épület megkölzethetőségét,
- anyagtárolási lehetőségeket,
- a tetőfelület megközelíthetőségét, szükség esetén daruzási lehetőségeket,
- az energia-, szükséges közműellátást,
- a kivitelezés során védendő szerkezeteket, tereket, esetleg műemléki értékeket.

A tervekben, a kivitelezés előkészítése során javasolt meghatározni, hogy a felújítási munkák mikor készíthetők, illetve adott esetben a felújítás időpontját a felújítási koncepció (bontás mértéke, ideiglenes csapadékvíz elleni védelem, anyaghasználat stb.) kidolgozása során figyelembe kell venni.

A megfelelő kivitelezéshoz a feladatok egyértelmű megfogalmazása szükséges. Amennyiben előzetesen a tetőszigetelés felújításához tervek nem készülnek és a kivitelezés anélkül folyik, akkor a tervezői felelősséget is a kivitelező viseli. Megbízó felelőssége, hogy megfelelően előkészített munkát adjon kivitelezésbe. Kivitelező felelőssége, hogy a megbízó által adott szakszerűtlen utasításokra felhívja a figyelmet.
A kivitelezést lehetőleg tapasztalt, referenciával és az adott technológiában jártas munkatársakkal rendelkező szakkivitelező cég végezze.

Az egyes technológiáknak megfelelő szükséges előkészítő munkákat az ÉMSZ Tetőszigetelések tervezési és kivitelezési irányelveinek és a Bitumenes lemezekből valamint a Műanyag és gumialapú lemezekből készülő csapadékvíz elleni szigetelések tervezési és kivitelezési szabályainak megfelelően az eredményes kialakítás érdekében el kell végezni.

Egy üzemelő épületnél a felújítás kivitelezése fokozottabb gondosságot és körültekintést igényel, mint egy új épület-tetőszigetelés készítése:

- meg kell óvni az épületet a felújítás közbeni beázásoktól;
- el kell kerülni a kivitelezési munka végzésekor az esetleges beázásokat;
- biztosítani kell a munkaterület elválasztását és a munkavégzés feltételeit.

Az épület beázásmentességére kell törekedni:

- időjárási viszontagságok esetén a napközben, de különösen az éjszakai takarást biztosítani kell;
- szakaszos munkavégzéssel, lehetőség szerint az ideális körülmények között egy nap alatt elvégezhető felületekre osztott szakaszokkal. Lefolyástan medencék nem alakulhatnak ki, amelyet ideiglenes vagy áthelyezett víznyelőkkel kell biztosítani;
- védőtetővel.

Éghető anyagok közvetlen közelében tűzveszélyes technológia nem alkalmazható.

A felújítási munkák alatt folyamatosan gondoskodni kell a tetőszigetelés rétegeinek szélszívás elleni ideiglenes védelméről.

A felújítást a bontási munkák előzik meg:

- leterhelő réteg bontása, esetleg deponálása;
- bontható, áthelyezhető elektromos és gépészeti vezetékek, antennák, villámvédelmi rendszer eltávolítása. A villámvédelmet úgy kell elbontani, hogy az a felújítás után visszahelyezhető legyen.;
- a már nem szükséges tetőfelépítmények bontása;
- a meglévő, átnedvesedett, bontandó rétegek esetleges perforálása, bontása;
- attikák, tetőfelépítmények mentén fémlemez burkolatok, szegélyek bontása;
- víznyelők, páraszellőzők, bontása, valamint a tetőfelépítmények, attikák szegélyezéseinek bontása;
- a meglévő szigetelésről minden felhőlyagosodást és felületi egyenlenséget el kell távolítani, az erősen nedves szerkezetek el kell bontani;
- felületek tisztítása.

A bontás megkezdése előtt a bontandó anyagok környezetvédelmi besorolását ellenőrizni szükséges. Veszélyes hulladéknak minősülő anyagokat az előírások szerint kell bontani, gyűjteni és kezelni.
Az újra felhasználó anyagokat a tetőn csak akkor szabad deponálni, ha a terhelést a tetőszerkezet károsodás nélkül elviseli. Nehezebb elemek tetőszerkezeten tárolása előtt statikus tervező szakvéleményének kérése, deponálási pontok kijelölése válhat szükségessé.

A felújított vagy új csapadékvíz elleni szigetelés vízhatlanságát ellenőrizni kell az ÉMSZ Tetőszigetelések tervezési és kivitelezési irányelveinek és a Bitumenes lemezekből valamint a Műanyag és gumialapú lemezekből készülő csapadékvíz elleni szigetelések tervezési és kivitelezési szabályainak megfelelően:

- árasztásos próbával,
- tüpréval,
- más módszerekkel.

8. HIVATKOZOTT ÉS FELHASZNÁLT DOKUMENTUMOK

8.1. Az irányelvhez kapcsolódó releváns források

8.1.1. Jogszabály

1. 1997. ÉVI LXXVIII. TÖRVÉNY AZ ÉPÍTETT KÖRNYEZET ALAKÍTÁSÁRÓL ÉS VÉDELMÉRŐL
2. 253/1997. (XII. 20.) KORM. RENDELET AZ ORSZÁGOS TELEPÜLÉSRENDEZÉSI ÉS ÉPÍTÉSI KÖVETELMÉNYEKKRŐL
3. 181/2003. (XI. 5.) KORM. RENDELET A LAKÁSÉPÍTÉSSEL KAPCSOLATOS KÖTELEZŐ JÓTÁLLÁSRÓL
4. 249/2004. (VIII. 27.) KORM. RENDELET AZ Egyes javító-karbantartó szolgáltatásokra vonatkozó kötelező jótállásról
5. 7/2006. (V. 24.) TMN RENDELET AZ ÉPÜLETEK ENERGETIKAI JELLEMEZŐINEK MEGHATÁROZÁSÁRÓL
6. AZ EURÓPAI PARLAMENT ÉS A TANÁCS 305/2011/EU RENDELETE (2011. MÁRCIUS 9.) AZ ÉPÍTÉSI TERMÉKEK FORGALMAZÁSÁRA VONATKOZÓ HARMONIZÁLT FELTÉTELEK MEGÁLLAPÍTÁSÁRÓL
7. 266/2013. (VII. 11.) KORM. RENDELET AZ ÉPÍTÉSÜGYI ÉS AZ ÉPÍTÉSÜGYEL ÖSSZEFÜGGŐ SZAKMAGYAKORLÁSI TEVÉKENYSÉGEKRŐL
8. 275/2013. (VII. 16.) KORM. RENDELET AZ ÉPÍTÉSI TERMÉK ÉPÍTMÉNYBE TÖRTÉNŐ BETERVEZÉSÉNEK ÉS BEÉPÍTÉSÉNEK, ENNEK SORÁN A TELJESÍTMÉNY IGAZOLÁSÁNAK RÉSZLETES SZABÁLYAIRÓL
9. 54/2014. (XII. 5.) BM RENDELET AZ ORSZÁGOS TŰZVÉDELMI SZABÁLYZATRÓL
10. 2013. ÉVI V. TÖRVÉNY A POLGÁRI TÖRVÉNYKÖNYVVRÓL (PTK.)
8.1.2. Szabvány

3. MSZ 8292:1986. VÍZSZIGETELŐ MUNKÁK FOGALOMMEGHATÁROZÁSAI

7. MSZ 24140:2015. ÉPÜLETEK ÉS ÉPÜLETHATÁROLÓ SZEKERKEZETEK HŐTECHNIKAI SZÁMÍTÁSAI

8. MSZ 15601-1:2007. ÉPÜLETAKUSZTIKA. 1. RÉSZ: ÉPÜLETEN BELÜLI HANGSZIGETELÉSI KÖVETELMÉNYEK

11. MSZ ENV 1187:2003. KÜLSŐ TŰZ TETŐRE GYAKOROLT HATÁSÁNAK VIZSGÁLATI MÓDSZERE (VISSZAVONT)

12. CEN/TS 1187:2012. TEST METHODS FOR EXTERNAL FIRE EXPOSURE TO ROOFS

13. MSZ EN 13501-5:2016. ÉPÍTÉSI TERMÉKEK ÉS ÉPÍTMÉNYSZERKEZETEK TŰZVÉDELMI OSZTÁLYOZÁSA. 5. RÉSZ: OSZTÁLYBA SOROLÁS A KÜLSŐ TŰZHATÁSNAK KITETT TETŐK VIZSGÁLAJATI ERDEMÉNYEINEK FELHASZNÁLÁSÁVAL

14. DIN 18195-1. BAUWERKSABDICHTUNGEN TEIL 1: GRUNDSÄTZE, DEFINITIONEN, ZUORDNUNG DER ABDICHTUNGSARTEN 2000 (VISSZAVONT)

15. DIN 18195-2. BAUWERKSABDICHTUNGEN TEIL 2: STOFFE 2000 (VISSZAVONT)
16. DIN 18195-3. BAUWERKSABDICHTUNGEN TEIL 3: ANORDERUNGEN AN DEN UNTERGRUND UND VERARBEITUNG DER STOFFE 2000 (VISSZAVONT)

17. DIN 18195-5. BAUWERKSABDICHTUNGEN TEIL TEIL 5: ABDICHTUNGEN GEGEN NICHTDRÜCKENDEN WASSER AUF DECKENFLÄCHEN UND IN NASSRÄUMEN, BEMESSUNG UND AUSFÜHRUNG 2000 (VISSZAVONT)

18. DIN 18195-8. BAUWERKSABDICHTUNGEN TEIL 8: ABDICHTUNGEN ÜBER BEWEGUNGSFUGEN 2004 (VISSZAVONT)

19. DIN 18195-9. BAUWERKSABDICHTUNGEN TEIL 9: DURCHDRINGUNGEN, ÜBERGÄNGE, AN UND ABSCHLÜSSE 2004 (VISSZAVONT)

20. DIN 18195-10. BAUWERKSABDICHTUNGEN TEIL 10: SCHUTZSCHICHTEN UND SCHUTZMASSNAHMEN 2004 (VISSZAVONT)

21. DIN 18195. ABDICHTUNG VON BAUWERKEN – BEGRIFFE 2017

8.1.3. Irányelv

4. HORVÁTH SÁNDOR (SZERK.-): TETŐSZIGETELÉSEK TERVEZÉSI ÉS KIVITELEZÉSI IRÁNYELVEI ÉPÜLETSZIGETELŐK, TETŐFEDŐK ÉS BÁDOGOSOK MAGYARORSZÁGI SZÖVETSÉGE, BUDAPEST 1994

5. TVMI 11.2:2020.01.22. TÜZVÉDELMI MŰSZAKI IRÁNYELVEK. ÉPÍTMÉNYSZERKEZETEK TÜZVÉDELMI JELLEMZŐI BELÜGYMINISZTÉRIUM ORSZÁGOS KATASZTRÓFAFÉDÉLMÉI FŐIGAZGATÓSÁG

6. TVMI 1.4:2020.07.20. TÜZVÉDELMI MŰSZAKI IRÁNYELV TŰZTERJEDÉS ELLENI VÉDELEM BELÜGYMINISZTÉRIUM ORSZÁGOS KATASZTRÓFAFÉDÉLMÉI FŐIGAZGATÓSÁG
8.1.4. Szakirodalom

3. WOLFGANG ERNST: DACHABDICHTUNG DACHBEGRUNUNG PROBLEME, GRUNDLAGEN, URSACHEN, ERKENTNISSE UND LÖSUNGEN 2005 ISBN 3-00-017011-1

7. HORVÁTH SÁNDOR: EXTRUDÁLT POLISZTIROL HABOK KÉTRÉTEGŰ ALKALMAZÁSA FORDÍTOTT RÉTEGRENDE TETŐSZIGETELÉSEKBEN MŰSZAKI ELLENŐR 2015/9. ISSN 2063-4447

8. HORVÁTH SÁNDOR: LAPOSTETŐK FELÚJÍTÁSÁNAK ESETTANULMÁNYAI (BME ÉPÜLETSZIGETELŐ SZAKMÉRNÖKI SZAK ÉLŐADÁSANYAG; KÉZIRAT) 2016

9. HORVÁTH SÁNDOR: BME „VÍZSZIGETELÉSEK” FAKULTATÍV TÁRGA ÉLŐADÁSAINAK KÉZIRATAI, 2016

10. HORVÁTH SÁNDOR (BME): TERASZBESZÉLGETÉSEK VÍZ AZ ÉPÜLETBEN METSZET TERVEZŐI NAPOK INTERNETES MEGJELENÉS: HTTPS://TERVLAP.HU/WEB/TOVABBKEPZES/TANANYAG/ID/763

11. DR. KAKASY LÁSZLÓ: A VÍZ ÚTJA A CSOMÓPONTOKTÓL A LEFOLYÓKIG HASZNOSÍTOTT LAPOSTETŐKÖN (BME SZERKEZETREKONSTRUKCIÓ 2. ÉLŐADÁSANYAG; KÉZIRAT) 2014

13. DR. KAKASY LÁSZLÓ: NEM JÁRHATÓ LAPOSTETŐK FELÚJÍTÁSA, REHABILITÁCIÓJA (BME SZERKEZETREKONSTRUKCIÓ 2. ÉLŐADÁSANYAG; KÉZIRAT) 2017

15. DR. LOÓR PÉTER (SZERK.): LAPOSTETŐK CSAPADÉKVÍZ ELLENI SZIGETELÉSÉNEK FELÚJÍTÁSA TANORG 1985

16. OSZTROLUCZKY MIKLÓS: VÍZSZIGETELÉS CSER KIADÓ, 2010

18. PETRÓ BÁLINT - HANÁK LÁSZLÓ: A KORSZERŰ CSAPADÉKSZIGETELÉSEK LEGÚJABB ÉPÜLETSZERKEZETI ÉS ÉPÜLETFIZIKAI PROBLÉMAI MAGYAR ÉPÍTŐIPAR 3. SZ. (1973)

21. ÉPÜLETFENNTARTÁSI 2X2, BUDAPEST, ÉTK - 2. LAPOSTETŐK SZIGETELÉSE 1985

22. ÉPÜLETFENNTARTÁSI ÚTMUTATÓ, BUDAPEST, ÉTK - 21. HÁZGYÁRI PANELOS LAKÓÉPÜLETÉK LAPOSTETŐSZIGETELÉSEINEK JELLEMZŐ HIBÁI ÉS JAVÍTÁSI MÓDSZEREI

A NEM HASZNOSÍTOTT LAPOSTETŐK FELÚJÍTÁSÁNAK TERVEZÉSE ÉS KIVITELEZÉSE
című építésügyi műszaki irányelvet a szakmai szervezetek véleményezése mellett
összeállította, a tervezet előkészítéséért felelős:

▶ Építésügyi Minőségellenőrző Innovációs Nonprofit Kft.
 ▶ Telefon: +36 (26) 502 300
 ▶ E-mail: emszb@emi.hu
 ▶ Honlap: www.emi.hu

A kiadvány megjelenése a Miniszterelnökség, valamint az Innovációs és Technológiai Minisztérium
támogatásával valósult meg.